Critical Issues of Vanadium-Based Cathodes Towards Practical Aqueous Zn-Ion Batteries

被引:14
|
作者
Jiang, Weikang [1 ,2 ]
Zhu, Kaiyue [1 ,3 ]
Yang, Weishen [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Catalysis, Dalian 116023, Peoples R China
[2] Univ Sci & Technol China, Dept Chem Phys, Hefei 230026, Anhui, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
aqueous Zn-ion batteries; by-products; dissolution; ion diffusion; vanadium-based materials; HIGH-CAPACITY; ENERGY-STORAGE; PERFORMANCE; OXIDE; TRANSFORMATION; DISSOLUTION; INSERTION; V2O5; CHALLENGES; MECHANISM;
D O I
10.1002/chem.202301769
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Aqueous zinc-ion batteries (ZIBs) are gaining significant attention for their numerous advantages, including high safety, high energy density, affordability, and environmental friendliness. However, the development of ZIBs has been hampered by the lack of suitable cathode materials that can store Zn2+ with high capacity and reversibility. Currently, vanadium-based materials with tunnel or layered structures are widely researched owing to their high theoretical capacity and diversified structures. However, their long-term cycling stability is unsatisfactory because of material dissolution, phase transformation, and restrictive kinetics in aqueous electrolytes, which limits their practical applications. Different from previous reviews on ZIBs, this review specifically addresses the critical issues faced by vanadium-based cathodes for practical aqueous ZIBs and proposes potential solutions. Focusing on vanadium-based cathodes, their ion storage mechanisms, the critical parameters affecting their performance, and the progress made in addressing the aforementioned problems are also summarized. Finally, future directions for the development of practical aqueous ZIB are suggested.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Guest-species-incorporation in manganese/vanadium-based oxides: Towards high performance aqueous zinc-ion batteries
    Li, Yan
    Zhang, Daohong
    Huang, Shaozhuan
    Yang, Hui Ying
    NANO ENERGY, 2021, 85
  • [22] Review of vanadium-based electrode materials for rechargeable aqueous zinc ion batteries
    Liu, Ying
    Wu, Xiang
    JOURNAL OF ENERGY CHEMISTRY, 2021, 56 : 223 - 237
  • [23] Vanadium-Based Cathodes Modification via Defect Engineering: Strategies to Support the Leap from Lab to Commercialization of Aqueous Zinc-Ion Batteries
    Zeng, Xin
    Gong, Zhe
    Wang, Cheng
    Cullen, Patrick J.
    Pei, Zengxia
    ADVANCED ENERGY MATERIALS, 2024, 14 (31)
  • [24] A novel and improved hydrophilic vanadium oxide-based cathode for aqueous Zn-ion batteries
    Zhang, Qiang
    Zhang, Yi
    Fu, Liangjie
    Liu, Sainan
    Yang, Huaming
    ELECTROCHIMICA ACTA, 2020, 354
  • [25] Structural engineering of cathodes for improved Zn-ion batteries
    Huang, Jiajia
    Li, Yuying
    Xie, Ruikuan
    Li, Jianwei
    Tian, Zhihong
    Chai, Guoliang
    Zhang, Yanwu
    Lai, Feili
    He, Guanjie
    Liu, Chuntai
    Liu, Tianxi
    Brett, Dan J. L.
    JOURNAL OF ENERGY CHEMISTRY, 2021, 58 : 147 - 155
  • [26] Understanding the Role of Graphene in Hydrated Layered V-Oxide Based Cathodes for Rechargeable Aqueous Zn-Ion Batteries
    Wu, Tao
    Zhu, Kaiyue
    Huang, Kevin
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (07)
  • [27] Effect of annealing on the MnO2 cathodes for high-performance aqueous Zn-ion batteries
    Prasad, Adesh
    Ramaraghavulu, R.
    Asif, Mohammad
    Dillip, G. R.
    Shim, J.
    Nagajyothi, P. C.
    CERAMICS INTERNATIONAL, 2024, 50 (24) : 55628 - 55638
  • [28] Defect regulation in bimetallic oxide cathodes for significantly improving the performance of flexible aqueous Zn-ion batteries
    Yang, Jiaqi
    Li, Jinliang
    Li, Yue
    Wang, Zihui
    Ma, Liang
    Mai, Wenjie
    Xu, Min
    Pan, Likun
    CHEMICAL ENGINEERING JOURNAL, 2023, 468
  • [29] Ammonium ion intercalated hydrated vanadium pentoxide for advanced aqueous rechargeable Zn-ion batteries
    Xu, L.
    Zhang, Y.
    Zheng, J.
    Jiang, H.
    Hu, T.
    Meng, C.
    MATERIALS TODAY ENERGY, 2020, 18
  • [30] Understanding the Critical Bulk Properties of Zn-Salt Solution Electrolytes for Aqueous Zn-Ion Batteries
    Sun, Shichen
    Yang, Xi
    Billings, Aidan
    Huang, Kevin
    CHEMISTRY OF MATERIALS, 2024, 36 (14) : 6805 - 6815