Self-powered exhaust gas purification by negative ions and photoelectric catalysis based on triboelectric nanogenerator

被引:12
|
作者
Sun, Tongyuan [1 ]
Zheng, Qiwei [1 ]
Luo, Hao [1 ]
Long, Jingling [1 ]
Zheng, Li [1 ]
Li, Hexing [1 ]
机构
[1] Shanghai Univ Elect Power, Coll Math & Phys, Shanghai Key Lab Mat Protect & Adv Mat Elect Power, Shanghai 200090, Peoples R China
基金
中国国家自然科学基金;
关键词
Triboelectric nanogenerator; Exhaust gas purification; Negative air ions; Electric-assisted photocatalysis; Synergistic effects; AIR-POLLUTION; DEGRADATION; IMPACT;
D O I
10.1016/j.nanoen.2023.108677
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Industrial exhaust gas emissions have caused many environmental problems such as particulate matter (PM) pollution and volatile organic compounds (VOCs) emissions, seriously endangering human's health. Here, we demonstrate a new method for air purification and degradation of VOCs based on synergetic effects of electric assisted photocatalysis and negative air ions generated by direct-current triboelectric nanogenerators (DCTENG). The negative electrode of DC-TENG is connected to carbon fiber bundle (CFB) to generate negative air ions, while the positive electrode of DC-TENG is connected to dust collection board loaded with catalyst and can provide a bias electric field for photocatalysis, allowing VOCs to be adsorbed onto the collection board and accelerating the efficiency of photocatalytic degradation. Under the driving of DC-TENG, 1.1 x 1013 negative ions are generated by CFB per second, which can reduce PM2.5 concentration in a sealed box from 999 & mu;g & BULL;m  3 to less than 50 & mu;g & BULL;m  3 within 80 s. The proposed system combining negative ions and photoelectric catalysis can reduce formaldehyde concentration from 1.97 ppm to 0 ppm in 12 min, which is 2.4 times higher than the degradation rate of photocatalysis alone. This air purification system demonstrated here not only harvests the wasted environmental energies but also proposes a new strategy to sink particulate matter and degrade VOCs in the air, demonstrating a cleaner, more efficient, multifunctional, and self-powered exhaust gas treatment system that can provide new solutions for future air purification.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] A Self-Powered Lantern Based on a Triboelectric-Photovoltaic Hybrid Nanogenerator
    Cao, Ran
    Wang, Jiaona
    Xing, Yi
    Song, Weixing
    Li, Nianwu
    Zhao, Shuyu
    Zhang, Chi
    Li, Congju
    ADVANCED MATERIALS TECHNOLOGIES, 2018, 3 (04):
  • [32] A triboelectric nanogenerator based on white sugar for self-powered humidity sensor
    Liu, Hongye
    Wang, Hao
    Fan, Yanping
    Lyu, Yan
    Liu, Zenghua
    SOLID-STATE ELECTRONICS, 2020, 174
  • [33] A triboelectric nanogenerator as self-powered temperature sensor based on PVDF and PTFE
    Kequan Xia
    Zhiyuan Zhu
    Hongze Zhang
    Zhiwei Xu
    Applied Physics A, 2018, 124
  • [34] Self-Powered Acoustic Sensor Based on Triboelectric Nanogenerator for Smart Monitoring
    Li, Yingzhe
    Liu, Chaoran
    Hu, Sanshan
    Sun, Peng
    Fang, Lingxing
    Lazarouk, Serguei
    Labunov, Vladimir
    Yang, Weihuang
    Li, Dujuan
    Fan, Kai
    Wang, Gaofeng
    Dong, Linxi
    Che, Lufeng
    ACOUSTICS AUSTRALIA, 2022, 50 (03) : 383 - 391
  • [35] Self-Powered Electrostatic Adsorption Face Mask Based on a Triboelectric Nanogenerator
    Liu, Guoxu
    Nie, Jinhui
    Han, Changbao
    Jiang, Tao
    Yang, Zhiwei
    Pang, Yaokun
    Xu, Liang
    Guo, Tong
    Bu, Tianzhao
    Zhang, Chi
    Wang, Zhong Lin
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (08) : 7126 - 7133
  • [36] Advances in Marine Self-Powered Vibration Sensor Based on Triboelectric Nanogenerator
    Zou, Yongjiu
    Sun, Minzheng
    Xu, Weipeng
    Zhao, Xin
    Du, Taili
    Sun, Peiting
    Xu, Minyi
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2022, 10 (10)
  • [37] Self-powered silicon PIN neutron detector based on triboelectric nanogenerator
    Zhu, Zhiyuan
    Li, Bao
    Zhao, En
    Yu, Min
    NANO ENERGY, 2022, 102
  • [38] Self-Powered Acoustic Sensor Based on Triboelectric Nanogenerator for Smart Monitoring
    Yingzhe Li
    Chaoran Liu
    Sanshan Hu
    Peng Sun
    Lingxing Fang
    Serguei Lazarouk
    Vladimir Labunov
    Weihuang Yang
    Dujuan Li
    Kai Fan
    Gaofeng Wang
    Linxi Dong
    Lufeng Che
    Acoustics Australia, 2022, 50 : 383 - 391
  • [39] A Self-Powered Vector Angle/Displacement Sensor Based on Triboelectric Nanogenerator
    Li, Chengyu
    Wang, Ziming
    Shu, Sheng
    Tang, Wei
    MICROMACHINES, 2021, 12 (03) : 1 - 10
  • [40] Self-Powered Phase Transition Driven by Triboelectric Nanogenerator
    Ren, Lele
    Xiao, Junfeng
    Wang, Wei
    Yu, Aifang
    Zhang, Yufei
    Zhai, Junyi
    ACS APPLIED ELECTRONIC MATERIALS, 2023, 5 (05) : 2845 - 2852