Controlling light propagation in multimode fibers for imaging, spectroscopy, and beyond

被引:61
作者
Cao, Hui [1 ]
Cizmar, Tomas [2 ,3 ,4 ]
Turtaev, Sergey [2 ]
Tyc, Tomas [3 ,5 ]
Rotter, Stefan [6 ]
机构
[1] Yale Univ, Dept Appl Phys, New Haven, CT 06511 USA
[2] Leibniz Inst Photon Technol, Albert Einstein Str 9, D-07745 Jena, Germany
[3] CAS, Inst Sci Instruments, Kralovopolska 147, Brno 61264, Czech Republic
[4] Friedrich Schiller Univ Jena, Inst Appl Opt, Frobelstieg 1, D-07743 Jena, Germany
[5] Masaryk Univ, Fac Sci, Dept Theoret Phys & Astrophys, Kotlaska 2, Brno 61137, Czech Republic
[6] Vienna Univ Technol, TU Wien, Inst Theoret Phys, A-1040 Vienna, Austria
基金
美国国家科学基金会; 欧洲研究理事会; 奥地利科学基金会;
关键词
TRANSVERSE ANDERSON LOCALIZATION; DEEP LEARNING RECONSTRUCTION; PRINCIPAL MODES; HIGH-RESOLUTION; KEY GENERATION; REAL-TIME; TRANSMISSION MATRIX; 3-DIMENSIONAL MICROFABRICATION; CONFOCAL MICROSCOPY; ULTRASHORT PULSES;
D O I
10.1364/AOP.484298
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Light transport in a highly multimode fiber exhibits complex behavior in space, time, frequency, and polarization, especially in the presence of mode coupling. The newly developed techniques of spatial wavefront shaping turn out to be highly suitable to harness such enormous complexity: a spatial light modulator enables precise characterization of field propagation through a multimode fiber, and by adjusting the incident wavefront it can accurately tailor the transmitted spatial pattern, temporal profile, and polarization state. This unprecedented control leads to multimode fiber applications in imaging, endoscopy, optical trapping, and microfabrication. Furthermore, the output speckle pattern from a multimode fiber encodes spatial, temporal, spectral, and polarization properties of the input light, allowing such information to be retrieved from spatial measurements only. This article provides an overview of recent advances and breakthroughs in controlling light propagation in multimode fibers, and discusses newly emerging applications. & COPY; 2023 Optica Publishing Group
引用
收藏
页码:524 / 612
页数:89
相关论文
共 271 条
[1]  
Abdullaev S.S., 1980, Radio_zika, V23, P766
[2]  
Agrawal G. P., 2012, Fiber-optic Communication Systems
[3]   Polarization-maintaining, large-effective-area, higher-order-mode fiber [J].
Ahmad, Raja ;
Yan, Man F. ;
Nicholson, Jeffrey W. ;
Abedin, Kazi S. ;
Westbrook, Paul S. ;
Headley, Clifford ;
Wisk, Patrick W. ;
Monberg, Eric M. ;
DiGiovanni, David J. .
OPTICS LETTERS, 2017, 42 (13) :2591-2594
[4]  
Akkermans E, 2007, MESOSCOPIC PHYSICS OF ELECTRONS AND PHOTONS, P1, DOI 10.1017/CBO9780511618833
[5]   Super- and Anti-Principal-Modes in Multimode Waveguides [J].
Ambichl, Philipp ;
Xiong, Wen ;
Bromberg, Yaron ;
Redding, Brandon ;
Cao, Hui ;
Rotter, Stefan .
PHYSICAL REVIEW X, 2017, 7 (04)
[6]   Ghost optical coherence tomography [J].
Amiot, Caroline G. ;
Ryczkowski, Piotr ;
Friberg, Ari T. ;
Dudley, John M. ;
Genty, Goery .
OPTICS EXPRESS, 2019, 27 (17) :24114-24122
[7]   Endo-microscopy beyond the Abbe and Nyquist limits [J].
Amitonova, Lyubov V. ;
de Boer, Johannes F. .
LIGHT-SCIENCE & APPLICATIONS, 2020, 9 (01)
[8]   Quantum key establishment via a multimode fiber [J].
Amitonova, Lyubov, V ;
Tentrup, Tristan B. H. ;
Vellekoop, Ivo M. ;
Pinkse, Pepijn W. H. .
OPTICS EXPRESS, 2020, 28 (05) :5965-5981
[9]   High-resolution wavefront shaping with a photonic crystal fiber for multimode fiber imaging [J].
Amitonova, Lyubov V. ;
Descloux, Adrien ;
Petschulat, Joerg ;
Frosz, Michael H. ;
Ahmed, Goran ;
Babic, Fehim ;
Jiang, Xin ;
Mosk, Allard P. ;
Russell, Philip St. J. ;
Pinkse, Pepijn W. H. .
OPTICS LETTERS, 2016, 41 (03) :497-500
[10]   Rotational memory effect of a multimode fiber [J].
Amitonova, Lyubov V. ;
Mosk, Allard P. ;
Pinkse, Pepijn W. H. .
OPTICS EXPRESS, 2015, 23 (16) :20569-20575