Feature embedding in click-through rate prediction

被引:0
作者
Pahor, Samo [1 ]
Kopic, Davorin [1 ]
Demsar, Jure [2 ]
机构
[1] Outbrain Slovenia, Dunajska Cesta 5, Ljubljana 1000, Slovenia
[2] Univ Ljubljana, Fac Comp & Informat Sci, Vecna Pot 113, Ljubljana 1000, Slovenia
来源
ELEKTROTEHNISKI VESTNIK | 2023年 / 90卷 / 03期
关键词
real-time bidding; click-through rate prediction; feature embedding; feature transformation;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We tackle the challenge of feature embedding for the purposes of improving the click-through rate prediction process. We select three models: logistic regression, factorization machines and deep factorization machines, as our baselines and propose five different feature embedding modules: embedding scaling, FM embedding, embedding encoding, NN embedding and the embedding reweighting module. The embedding modules act as a way to improve baseline model feature embeddings and are trained alongside the rest of the model parameters in an end-to-end manner. Each module is individually added to a baseline model to obtain a new augmented model. We test the predictive performance of our augmented models on a publicly accessible dataset used for benchmarking click-through rate prediction models. Our results show that several proposed embedding modules provide an important increase in predictive performance without a drastic increase in training time.
引用
收藏
页码:75 / 89
页数:15
相关论文
共 50 条
  • [31] Practice on Long Sequential User Behavior Modeling for Click-Through Rate Prediction
    Pi, Qi
    Bian, Weijie
    Zhou, Guorui
    Zhu, Xiaoqiang
    Gai, Kun
    [J]. KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 2671 - 2679
  • [32] Sparse Attentive Memory Network for Click-through Rate Prediction with Long Sequences
    Lin, Qianying
    Zhou, Wen-Ji
    Wang, Yanshi
    Da, Qing
    Chen, Qing-Guo
    Wang, Bing
    [J]. PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 3312 - 3321
  • [33] Deep Spatio-Temporal Neural Networks for Click-Through Rate Prediction
    Ouyang, Wentao
    Zhang, Xiuwu
    Li, Li
    Zou, Heng
    Xing, Xin
    Liu, Zhaojie
    Du, Yanlong
    [J]. KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 2078 - 2086
  • [34] A General Method For Automatic Discovery of Powerful Interactions In Click-Through Rate Prediction
    Meng, Ze
    Zhang, Jinnian
    Li, Yumeng
    Li, Jiancheng
    Zhu, Tanchao
    Sun, Lifeng
    [J]. SIGIR '21 - PROCEEDINGS OF THE 44TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2021, : 1298 - 1307
  • [35] MIN: multi-dimensional interest network for click-through rate prediction
    Yan, Cairong
    Li, Xiaoke
    Zhang, Yanting
    Wang, Zijian
    Wan, Yongquan
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2023, 65 (10) : 3945 - 3965
  • [36] Relation-level user behavior modeling for click-through rate prediction
    Deng, Hangyu
    Tian, Yanling
    Luo, Jia
    Hu, Jinglu
    [J]. IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2022, 17 (03) : 398 - 406
  • [37] Click-through Rate Prediction Based on Deep Belief Nets and Its Optimization
    Chen J.-H.
    Zhang Q.
    Wang S.-L.
    Shi J.-Y.
    Zhao Z.-Q.
    [J]. Ruan Jian Xue Bao/Journal of Software, 2019, 30 (12): : 3665 - 3682
  • [38] Towards Understanding the Overfitting Phenomenon of Deep Click-Through Rate Prediction Models
    Zhang, Zhao-Yu
    Sheng, Xiang-Rong
    Zhang, Yujing
    Jiang, Biye
    Han, Shuguang
    Deng, Hongbo
    Zheng, Bo
    [J]. PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 2671 - 2680
  • [39] A Dynamic Neural Network Model for Click-Through Rate Prediction in Real-Time Bidding
    Qu, Xianshan
    Li, Li
    Liu, Xi
    Chen, Rui
    Ge, Yong
    Choi, Soo-Hyun
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 1887 - 1896
  • [40] Deep Situation-Aware Interaction Network for Click-Through Rate Prediction
    Lv, Yimin
    Wang, Shuli
    Jin, Beihong
    Yu, Yisong
    Zhang, Yapeng
    Dong, Jian
    Wang, Yongkang
    Wang, Xingxing
    Wang, Dong
    [J]. PROCEEDINGS OF THE 17TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2023, 2023, : 171 - 182