Feature embedding in click-through rate prediction

被引:0
作者
Pahor, Samo [1 ]
Kopic, Davorin [1 ]
Demsar, Jure [2 ]
机构
[1] Outbrain Slovenia, Dunajska Cesta 5, Ljubljana 1000, Slovenia
[2] Univ Ljubljana, Fac Comp & Informat Sci, Vecna Pot 113, Ljubljana 1000, Slovenia
来源
ELEKTROTEHNISKI VESTNIK | 2023年 / 90卷 / 03期
关键词
real-time bidding; click-through rate prediction; feature embedding; feature transformation;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We tackle the challenge of feature embedding for the purposes of improving the click-through rate prediction process. We select three models: logistic regression, factorization machines and deep factorization machines, as our baselines and propose five different feature embedding modules: embedding scaling, FM embedding, embedding encoding, NN embedding and the embedding reweighting module. The embedding modules act as a way to improve baseline model feature embeddings and are trained alongside the rest of the model parameters in an end-to-end manner. Each module is individually added to a baseline model to obtain a new augmented model. We test the predictive performance of our augmented models on a publicly accessible dataset used for benchmarking click-through rate prediction models. Our results show that several proposed embedding modules provide an important increase in predictive performance without a drastic increase in training time.
引用
收藏
页码:75 / 89
页数:15
相关论文
共 50 条
[21]   Deep Multi-Interest Network for Click-through Rate Prediction [J].
Xiao, Zhibo ;
Yang, Luwei ;
Jiang, Wen ;
Wei, Yi ;
Hu, Yi ;
Wang, Hao .
CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, :2265-2268
[22]   Deep Interest with Hierarchical Attention Network for Click-Through Rate Prediction [J].
Xu, Weinan ;
He, Hengxu ;
Tan, Minshi ;
Li, Yunming ;
Lang, Jun ;
Guo, Dongbai .
PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), 2020, :1905-1908
[23]   Graph-aware collaborative reasoning for click-through rate prediction [J].
Xin Zhang ;
Zengmao Wang ;
Bo Du .
World Wide Web, 2023, 26 :967-987
[24]   A Deep Behavior Path Matching Network for Click-Through Rate Prediction [J].
Dong, Jian ;
Yu, Yisong ;
Zhang, Yapeng ;
Lv, Yiming ;
Wang, Shuli ;
Jin, Beihong ;
Wang, Yongkang ;
Wang, Xingxing ;
Wang, Dong .
COMPANION OF THE WORLD WIDE WEB CONFERENCE, WWW 2023, 2023, :538-542
[25]   Deep Intention-Aware Network for Click-Through Rate Prediction [J].
Xia, Yaxian ;
Cao, Yi ;
Hu, Sihao ;
Liu, Tong ;
Lu, Lingling .
COMPANION OF THE WORLD WIDE WEB CONFERENCE, WWW 2023, 2023, :533-537
[26]   Graph-aware collaborative reasoning for click-through rate prediction [J].
Zhang, Xin ;
Wang, Zengmao ;
Du, Bo .
WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2023, 26 (03) :967-987
[27]   Deep Target Session Interest Network for Click-Through Rate Prediction [J].
Zhong, Hongjiang ;
Ma, Junchao ;
Duan, Xiongbao ;
Gu, Shuting ;
Yao, Junmei .
2024 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN 2024, 2024,
[28]   Click-through Rate Prediction for Video Cold-start Problem [J].
Zhang L.-M. ;
Dong J.-F. ;
Bao C.-Z. ;
Ji S.-L. ;
Wang X. .
Ruan Jian Xue Bao/Journal of Software, 2022, 33 (12) :4838-4850
[29]   Graph Intention Network for Click-through Rate Prediction in Sponsored Search [J].
Li, Feng ;
Chen, Zhenrui ;
Wang, Pengjie ;
Ren, Yi ;
Zhang, Di ;
Zhu, Xiaoyu .
PROCEEDINGS OF THE 42ND INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '19), 2019, :961-964
[30]   Adversarial Gradient Driven Exploration for Deep Click-Through Rate Prediction [J].
Wu, Kailun ;
Bian, Weijie ;
Chan, Zhangming ;
Ren, Lejian ;
Xiang, Shiming ;
Han, Shuguang ;
Deng, Hongbo ;
Zheng, Bo .
PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, :2050-2058