Feature embedding in click-through rate prediction

被引:0
作者
Pahor, Samo [1 ]
Kopic, Davorin [1 ]
Demsar, Jure [2 ]
机构
[1] Outbrain Slovenia, Dunajska Cesta 5, Ljubljana 1000, Slovenia
[2] Univ Ljubljana, Fac Comp & Informat Sci, Vecna Pot 113, Ljubljana 1000, Slovenia
来源
ELEKTROTEHNISKI VESTNIK | 2023年 / 90卷 / 03期
关键词
real-time bidding; click-through rate prediction; feature embedding; feature transformation;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We tackle the challenge of feature embedding for the purposes of improving the click-through rate prediction process. We select three models: logistic regression, factorization machines and deep factorization machines, as our baselines and propose five different feature embedding modules: embedding scaling, FM embedding, embedding encoding, NN embedding and the embedding reweighting module. The embedding modules act as a way to improve baseline model feature embeddings and are trained alongside the rest of the model parameters in an end-to-end manner. Each module is individually added to a baseline model to obtain a new augmented model. We test the predictive performance of our augmented models on a publicly accessible dataset used for benchmarking click-through rate prediction models. Our results show that several proposed embedding modules provide an important increase in predictive performance without a drastic increase in training time.
引用
收藏
页码:75 / 89
页数:15
相关论文
empty
未找到相关数据