Feature embedding in click-through rate prediction

被引:0
|
作者
Pahor, Samo [1 ]
Kopic, Davorin [1 ]
Demsar, Jure [2 ]
机构
[1] Outbrain Slovenia, Dunajska Cesta 5, Ljubljana 1000, Slovenia
[2] Univ Ljubljana, Fac Comp & Informat Sci, Vecna Pot 113, Ljubljana 1000, Slovenia
来源
ELEKTROTEHNISKI VESTNIK | 2023年 / 90卷 / 03期
关键词
real-time bidding; click-through rate prediction; feature embedding; feature transformation;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We tackle the challenge of feature embedding for the purposes of improving the click-through rate prediction process. We select three models: logistic regression, factorization machines and deep factorization machines, as our baselines and propose five different feature embedding modules: embedding scaling, FM embedding, embedding encoding, NN embedding and the embedding reweighting module. The embedding modules act as a way to improve baseline model feature embeddings and are trained alongside the rest of the model parameters in an end-to-end manner. Each module is individually added to a baseline model to obtain a new augmented model. We test the predictive performance of our augmented models on a publicly accessible dataset used for benchmarking click-through rate prediction models. Our results show that several proposed embedding modules provide an important increase in predictive performance without a drastic increase in training time.
引用
收藏
页码:75 / 89
页数:15
相关论文
共 50 条
  • [1] Embedding Normalization: Significance Preserving Feature Normalization for Click-Through Rate Prediction
    Yi, Joonyoung
    Kim, Beomsu
    Chang, Buru
    21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS ICDMW 2021, 2021, : 75 - 84
  • [2] HIEN: Hierarchical Intention Embedding Network for Click-Through Rate Prediction
    Zheng, Zuowu
    Zhang, Changwang
    Gao, Xiaofeng
    Chen, Guihai
    PROCEEDINGS OF THE 45TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '22), 2022, : 322 - 331
  • [3] Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction
    Liu, Bin
    Tang, Ruiming
    Chen, Yingzhi
    Yu, Jinkai
    Guo, Huifeng
    Zhang, Yuzhou
    WEB CONFERENCE 2019: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2019), 2019, : 1119 - 1129
  • [4] Scenario-Adaptive Feature Interaction for Click-Through Rate Prediction
    Min, Erxue
    Luo, Da
    Lin, Kangyi
    Huang, Chunzhen
    Liu, Yang
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 4661 - 4672
  • [5] Click-Through Rate Prediction Using Feature Engineered Boosting Algorithms
    Bakhtyari, Mohamadreza
    Mirzaei, Saye
    2021 26TH INTERNATIONAL COMPUTER CONFERENCE, COMPUTER SOCIETY OF IRAN (CSICC), 2021,
  • [6] Click-Through Rate Prediction Combining Mutual Information Feature Weighting and Feature Interaction
    Wang, Xiaowei
    Dong, Hongbin
    Han, Shuang
    IEEE ACCESS, 2020, 8 (08): : 207216 - 207225
  • [7] Feature-Interaction-Enhanced Sequential Transformer for Click-Through Rate Prediction
    Yuan, Quan
    Zhu, Ming
    Li, Yushi
    Liu, Haozhe
    Guo, Siao
    APPLIED SCIENCES-BASEL, 2024, 14 (07):
  • [8] A Novel Click-Through Rate Prediction Model Based on Deep Feature Fusion Network
    Shi, Xiujin
    Gong, Yuan
    Zhang, Yiwei
    Qin, Yanxia
    AATCC JOURNAL OF RESEARCH, 2024, 11 (1_SUPPL) : 73 - 82
  • [9] FINET: Fine-grained Feature Interaction Network for Click-through Rate Prediction
    Lian, Zhibin
    Ge, Hong
    2020 12TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), 2020, : 334 - 339
  • [10] Neighborhood search with heuristic-based feature selection for click-through rate prediction
    Aksu, Dogukan
    Toroslu, Ismail Hakki
    Davulcu, Hasan
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 146