Misclassification Error, Binary Regression Bias, and Reliability in Multidimensional Poverty Measurement: An Estimation Approach Based on Bayesian Modelling

被引:0
作者
Najera, Hector [1 ,2 ,3 ]
机构
[1] Univ Nacl Autonoma Mexico, UNAM, Mexico City, Mexico
[2] PUED, Programme Dev Studies, Mexico City, Mexico
[3] UNAM, Coyoacan 04510, Mexico
关键词
Poverty; measurement; classification error; Bayesian modeling; ALPHA; POWER;
D O I
10.1080/15366367.2022.2026104
中图分类号
C [社会科学总论];
学科分类号
03 ; 0303 ;
摘要
Measurement error affects the quality of population orderings of an index and, hence, increases the misclassification of the poor and the non-poor groups and affects statistical inferences from binary regression models. Hence, the conclusions about the extent, profile, and distribution of poverty are likely to be misleading. However, the size and type (false positive/negatives) of classification error have remained untraceable in poverty research. This paper draws upon previous theoretical literature to develop a Bayesian-based estimator of population misclassification and binary-regression coefficient bias. The study uses the reliability values of existing poverty indices to set up a Monte Carlo study based on factor mixture models to illustrate the connections between measurement error, misclassification, and bias and evaluate the procedure and discusses its importance for real-world applications.
引用
收藏
页码:63 / 81
页数:19
相关论文
共 42 条
[1]  
Alkire S., 2010, ACUTE MULTIDIMENSION, DOI 10.2139/ssrn.1815243
[2]  
Alkire S., 2015, MULTIDIMENSIONAL POV, DOI 10.1093/acprof:oso/9780199689491.001.0001
[3]  
[Anonymous], 1999, Annales d'Economie et de Statistique
[4]  
Bandalos D. L., 2018, Measurement theory and applications for the social sciences
[5]   Stan: A Probabilistic Programming Language [J].
Carpenter, Bob ;
Gelman, Andrew ;
Hoffman, Matthew D. ;
Lee, Daniel ;
Goodrich, Ben ;
Betancourt, Michael ;
Brubaker, Marcus A. ;
Guo, Jiqiang ;
Li, Peter ;
Riddell, Allen .
JOURNAL OF STATISTICAL SOFTWARE, 2017, 76 (01) :1-29
[6]   Reliability, Population Classification and Weighting in Multidimensional Poverty Measurement: A Monte Carlo Study [J].
Catalan, Hector E. Najera .
SOCIAL INDICATORS RESEARCH, 2019, 142 (03) :887-910
[7]  
CONEVAL, 2011, REV INT ESTAD STICA, V2, P36
[8]  
Cortes F., 2007, Estudios Sociologicos, P3, DOI https://doi.org/10.24201/es.2007v25n73.441
[9]  
Goodrich Ben, 2024, CRAN
[10]  
Gordon D., 2006, Poverty and social exclusion in Britain, P29