The forward-backward envelope for sampling with the overdamped Langevin algorithm

被引:3
|
作者
Eftekhari, Armin [1 ]
Vargas, Luis [2 ,3 ]
Zygalakis, Konstantinos C. [2 ,3 ]
机构
[1] Umea Univ, Dept Math & Math Stat, Umea, Sweden
[2] Bayes Ctr, Maxwell Inst Math Sci, 47 Potterrow, Edinburgh, Scotland
[3] Univ Edinburgh, Sch Math, Edinburgh, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Markov chain Monte Carlo; Convex optimization; Langevin equation; MONTE-CARLO; MINIMIZATION; CONVERGENCE; SMOOTH;
D O I
10.1007/s11222-023-10254-y
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we analyse a proximal method based on the idea of forward-backward splitting for sampling from distributions with densities that are not necessarily smooth. In particular, we study the non-asymptotic properties of the Euler-Maruyama discretization of the Langevin equation, where the forward-backward envelope is used to deal with the non-smooth part of the dynamics. An advantage of this envelope, when compared to widely-used Moreu-Yoshida one and the MYULA algorithm, is that it maintains the MAP estimator of the original non-smooth distribution. We also study a number of numerical experiments that support our theoretical findings.
引用
收藏
页数:24
相关论文
共 50 条