In this paper, we analyse a proximal method based on the idea of forward-backward splitting for sampling from distributions with densities that are not necessarily smooth. In particular, we study the non-asymptotic properties of the Euler-Maruyama discretization of the Langevin equation, where the forward-backward envelope is used to deal with the non-smooth part of the dynamics. An advantage of this envelope, when compared to widely-used Moreu-Yoshida one and the MYULA algorithm, is that it maintains the MAP estimator of the original non-smooth distribution. We also study a number of numerical experiments that support our theoretical findings.
机构:
Univ Paris Est Marne la Vallee, Lab Informat Gaspard Monge, F-77454 Champs Sur Marne, Marne La Vallee, France
Univ Paris Est Marne la Vallee, CNRS, UMR 8049, F-77454 Champs Sur Marne, Marne La Vallee, FranceUniv Paris Est Marne la Vallee, Lab Informat Gaspard Monge, F-77454 Champs Sur Marne, Marne La Vallee, France
Chouzenoux, Emilie
Pesquet, Jean-Christophe
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Est Marne la Vallee, Lab Informat Gaspard Monge, F-77454 Champs Sur Marne, Marne La Vallee, France
Univ Paris Est Marne la Vallee, CNRS, UMR 8049, F-77454 Champs Sur Marne, Marne La Vallee, FranceUniv Paris Est Marne la Vallee, Lab Informat Gaspard Monge, F-77454 Champs Sur Marne, Marne La Vallee, France
机构:
Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R ChinaHong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
Liu, Tianxiang
Pong, Ting Kei
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R ChinaHong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China