Generalizable Deep Learning-Based Sleep Staging Approach for Ambulatory Textile Electrode Headband Recordings

被引:6
作者
Rusanen, Matias [1 ,2 ]
Huttunen, Riku [1 ,2 ]
Korkalainen, Henri [1 ,2 ]
Myllymaa, Sami [1 ,2 ]
Toeyraes, Juha [1 ,3 ,4 ]
Myllymaa, Katja [1 ,2 ]
Sigurdardottir, Sigridur [5 ]
Olafsdottir, Kristin A. [5 ]
Leppaenen, Timo [1 ,2 ,4 ]
Arnardottir, Erna S. [5 ,6 ]
Kainulainen, Samu [1 ,2 ]
机构
[1] Univ Eastern Finland, Dept Tech Phys, FI-70211 Kuopio, Finland
[2] Kuopio Univ Hosp, Diagnost Imaging Ctr, FI-70211 Kuopio, Finland
[3] Kuopio Univ Hosp, Sci Serv Ctr, FI-70211 Kuopio, Finland
[4] Univ Queensland, Sch Informat Technol & Elect Engn, Brisbane, QLD 4067, Australia
[5] Reykjavik Univ, Sch Technol, Sleep Inst, IS-102 Reykjavik, Iceland
[6] Landspitali Natl Univ Hosp Iceland, IS-101 Reykjavik, Iceland
基金
欧盟地平线“2020”; 芬兰科学院;
关键词
Sleep; Electrodes; Recording; Electroencephalography; Textiles; Electrooculography; Standards; Deep learning; electrooculography; sleep; textile electrodes; wearables; convolutional neural network; POLYSOMNOGRAPHY; DIAGNOSIS; CENTERS; APNEA;
D O I
10.1109/JBHI.2023.3240437
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Reliable, automated, and user-friendly solutions for the identification of sleep stages in home environment are needed in various clinical and scientific research settings. Previously we have shown that signals recorded with an easily applicable textile electrode headband (FocusBand Technologies, T 2 Green Pty Ltd) contain characteristics similar to the standard electrooculography (EOG, E1-M2). We hypothesize that the electroencephalographic (EEG) signals recorded using the textile electrode headband are similar enough with standard EOG in order to develop an automatic neural network-based sleep staging method that generalizes from diagnostic polysomnographic (PSG) data to ambulatory sleep recordings of textile electrode-based forehead EEG. Standard EOG signals together with manually annotated sleep stages from clinical PSG dataset (n = 876) were used to train, validate, and test a fully convolutional neural network (CNN). Furthermore, ambulatory sleep recordings including a standard set of gel-based electrodes and the textile electrode headband were conducted for 10 healthy volunteers at their homes to test the generalizability of the model. In the test set (n = 88) of the clinical dataset, the model's accuracy for 5-stage sleep stage classification was 80% (? = 0.73) using only the single-channel EOG. The model generalized well for the headband-data, reaching 82% (? = 0.75) overall sleep staging accuracy. In comparison, accuracy of the model was 87% (? = 0.82) in home recordings using the standard EOG. In conclusion, the CNN model shows potential on automatic sleep staging of healthy individuals using a reusable electrode headband in a home environment.
引用
收藏
页码:1869 / 1880
页数:12
相关论文
共 56 条
[1]   Inter-database validation of a deep learning approach for automatic sleep scoring [J].
Alvarez-Estevez, Diego ;
Rijsman, Roselyne M. .
PLOS ONE, 2021, 16 (08)
[2]   The Dreem Headband compared to polysomnography for e ectroencephalographic signal acquisition and sleep staging [J].
Arnal, Pierrick J. ;
Thorey, Valentin ;
Debellemaniere, Eden ;
Ballard, Michael E. ;
Hernandez, Albert Bou ;
Guillot, Antoine ;
Jourde, Hugo ;
Harris, Mason ;
Guillard, Mathias ;
Van Beers, Pascal ;
Chennaoui, Mounir ;
Sauvet, Fabien .
SLEEP, 2020, 43 (11)
[3]   Nocturnal sweating - a common symptom of obstructive sleep apnoea: the Icelandic sleep apnoea cohort [J].
Arnardottir, Erna Sif ;
Janson, Christer ;
Bjornsdottir, Erla ;
Benediktsdottir, Bryndis ;
Juliusson, Sigurdur ;
Kuna, Samuel T. ;
Pack, Allan I. ;
Gislason, Thorarinn .
BMJ OPEN, 2013, 3 (05)
[4]  
Berry R. B., 2018, AASM MANUAL SCORING, DOI [10.1016/j.carbon.2012.07.027, DOI 10.1016/J.CARBON.2012.07.027]
[5]   Potential Underestimation of Sleep Apnea Severity by At-Home Kits: Rescoring In-Laboratory Polysomnography Without Sleep Staging [J].
Bianchi, Matt T. ;
Goparaju, Balaji .
JOURNAL OF CLINICAL SLEEP MEDICINE, 2017, 13 (04) :551-555
[6]   A comparative review on sleep stage classification methods in patients and healthy individuals [J].
Boostani, Reza ;
Karimzadeh, Foroozan ;
Nami, Mohammad .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2017, 140 :77-91
[7]   Unattended home-based polysomnography for sleep disordered breathing: Current concepts and perspectives [J].
Bruyneel, Marie ;
Ninane, Vincent .
SLEEP MEDICINE REVIEWS, 2014, 18 (04) :341-347
[8]   Sleep efficiency during sleep studies: results of a prospective study comparing home-based and in-hospital polysomnography [J].
Bruyneel, Marie ;
Sanida, Christina ;
Art, Genevieve ;
Libert, Walter ;
Cuvelier, Laurent ;
Paesmans, Marianne ;
Sergysels, Roger ;
Ninane, Vincent .
JOURNAL OF SLEEP RESEARCH, 2011, 20 (01) :201-206
[9]   A Deep Learning Strategy for Automatic Sleep Staging Based on Two-Channel EEG Headband Data [J].
Casciola, Amelia A. ;
Carlucci, Sebastiano K. ;
Kent, Brianne A. ;
Punch, Amanda M. ;
Muszynski, Michael A. ;
Zhou, Daniel ;
Kazemi, Alireza ;
Mirian, Maryam S. ;
Valerio, Jason ;
McKeown, Martin J. ;
Nygaard, Haakon B. .
SENSORS, 2021, 21 (10)
[10]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848