Exciton radiative lifetime in CdSe quantum dots

被引:12
作者
Ji, Zhimin [1 ,2 ]
Song, Zhigang [1 ]
机构
[1] Chinese Acad Sci, Inst Semicond, State Key Lab Superlatt & Microstruct, Beijing 100083, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
关键词
solar cells; CdSe quantum dot; radiative lifetime; scaling law; optical band gap; exciton fine structure; room temperature; BAND-EDGE EXCITON; SPONTANEOUS EMISSION RATE; FINE-STRUCTURE; PSEUDOPOTENTIAL CALCULATIONS; ELECTRONIC-STRUCTURE; SIZE DEPENDENCE; NANOCRYSTALS; CDTE; FLUORESCENCE; DYNAMICS;
D O I
10.1088/1674-4926/44/3/032702
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Colloidal CdSe quantum dots (QDs) are promising materials for solar cells because of their simple preparation process and compatibility with flexible substrates. The QD radiative recombination lifetime has attracted enormous attention as it affects the probability of photogenerated charges leaving the QDs and being collected at the battery electrodes. However, the scaling law for the exciton radiative lifetime in CdSe QDs is still a puzzle. This article presents a novel explanation that reconciles this controversy. Our calculations agree with the experimental measurements of all three divergent trends in a broadened energy window. Further, we proved that the exciton radiative lifetime is a consequence of the thermal average of decays for all thermally accessible exciton states. Each of the contradictory size-dependent patterns reflects this trend in a specific size range. As the optical band gap increases, the radiative lifetime decreases in larger QDs, increases in smaller QDs, and is weakly dependent on size in the intermediate energy region. This study addresses the inconsistencies in the scaling law of the exciton lifetime and gives a unified interpretation over a widened framework. Moreover, it provides valuable guidance for carrier separation in the thin film solar cell of CdSe QDs.
引用
收藏
页数:10
相关论文
共 77 条
[61]   Photonic Effects on the Radiative Decay Rate and Luminescence Quantum Yield of Doped Nanocrystals [J].
Senden, Tim ;
Rabouw, Freddy T. ;
Meijerink, Andries .
ACS NANO, 2015, 9 (02) :1801-1808
[62]   Band-Edge Exciton in CdSe and Other II-VI and III-V Compound Semiconductor Nanocrystals - Revisited [J].
Sercel, Peter C. ;
Efros, Alexander L. .
NANO LETTERS, 2018, 18 (07) :4061-4068
[63]   EXCITONIC OPTICAL NONLINEARITY AND EXCITON DYNAMICS IN SEMICONDUCTOR QUANTUM DOTS [J].
TAKAGAHARA, T .
PHYSICAL REVIEW B, 1987, 36 (17) :9293-9296
[64]   Ultrafast carrier dynamics in CdSe nanocrystals determined by femtosecond fluorescence upconversion spectroscopy [J].
Underwood, DF ;
Kippeny, T ;
Rosenthal, SJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (02) :436-443
[65]   Frequency-dependent spontaneous emission rate from CdSe and CdTe nanocrystals: Influence of dark states [J].
van Driel, AF ;
Allan, G ;
Delerue, C ;
Lodahl, P ;
Vos, WL ;
Vanmaekelbergh, D .
PHYSICAL REVIEW LETTERS, 2005, 95 (23)
[66]   Energy levels of CdSe quantum dots: Wurtzite versus zinc-blende structure [J].
vonGrunberg, HH .
PHYSICAL REVIEW B, 1997, 55 (04) :2293-2302
[67]   The scaling of the effective band gaps in Indium-Arsenide quantum dots and wires [J].
Wang, Fudong ;
Yu, Heng ;
Jeong, Sohee ;
Pietryga, Jeffrey M. ;
Hollingsworth, Jennifer A. ;
Gibbons, Patrick C. ;
Buhro, William E. .
ACS NANO, 2008, 2 (09) :1903-1913
[68]   Pseudopotential calculations of nanoscale CdSe quantum dots [J].
Wang, LW ;
Zunger, A .
PHYSICAL REVIEW B, 1996, 53 (15) :9579-9582
[69]   ELECTRONIC-STRUCTURE PSEUDOPOTENTIAL CALCULATIONS OF LARGE (APPROXIMATE-TO-1000 ATOMS) SI QUANTUM DOTS [J].
WANG, LW ;
ZUNGER, A .
JOURNAL OF PHYSICAL CHEMISTRY, 1994, 98 (08) :2158-2165
[70]   SOLVING SCHRODINGERS EQUATION AROUND A DESIRED ENERGY - APPLICATION TO SILICON QUANTUM DOTS [J].
WANG, LW ;
ZUNGER, A .
JOURNAL OF CHEMICAL PHYSICS, 1994, 100 (03) :2394-2397