Low-Latency Federated Learning With DNN Partition in Distributed Industrial IoT Networks

被引:28
|
作者
Deng, Xiumei [1 ]
Li, Jun [1 ]
Ma, Chuan [1 ,2 ]
Wei, Kang [1 ]
Shi, Long [1 ]
Ding, Ming [3 ]
Chen, Wen [4 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Elect & Opt Engn, Nanjing 210094, Peoples R China
[2] Southeast Univ, Key Lab Comp Network & Informat Integrat, Minist Educ, Nanjing 211189, Peoples R China
[3] CSIRO, Data61, Sydney, NSW, Australia
[4] Shanghai Jiao Tong Univ, Dept Elect Engn, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Training; Industrial Internet of Things; Performance evaluation; Resource management; Computational modeling; Logic gates; Data models; Federated learning; deep neural network (DNN) partition; device-specific participation rate; dynamic device scheduling and resource allocation; RESOURCE-ALLOCATION; CLIENT SELECTION; OPTIMIZATION; INTERNET; EDGE; DESIGN; SCHEME; ENERGY;
D O I
10.1109/JSAC.2022.3229436
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Federated Learning (FL) empowers Industrial Internet of Things (IIoT) with distributed intelligence of industrial automation thanks to its capability of distributed machine learning without any raw data exchange. However, it is rather challenging for lightweight IIoT devices to perform computation-intensive local model training over large-scale deep neural networks (DNNs). Driven by this issue, we develop a communication-computation efficient FL framework for resource-limited IIoT networks that integrates DNN partition technique into the standard FL mechanism, wherein IIoT devices perform local model training over the bottom layers of the objective DNN, and offload the top layers to the edge gateway side. Considering imbalanced data distribution, we derive the device-specific participation rate to involve the devices with better data distribution in more communication rounds. Upon deriving the device-specific participation rate, we propose to minimize the training delay under the constraints of device-specific participation rate, energy consumption and memory usage. To this end, we formulate a joint optimization problem of device scheduling and resource allocation (i.e. DNN partition point, channel assignment, transmit power, and computation frequency), and solve the long-term min-max mixed integer non-linear programming based on the Lyapunov technique. In particular, the proposed dynamic device scheduling and resource allocation (DDSRA) algorithm can achieve a trade-off to balance the training delay minimization and FL performance. We also provide the FL convergence bound for the DDSRA algorithm with both convex and non-convex settings. Experimental results demonstrate the derived device-specific participation rate in terms of feasibility, and show that the DDSRA algorithm outperforms baselines in terms of test accuracy and convergence time.
引用
收藏
页码:755 / 775
页数:21
相关论文
共 50 条
  • [41] FEDERATED-LEARNING-BASED CLIENT SCHEDULING FOR LOW-LATENCY WIRELESS COMMUNICATIONS
    Xia, Wenchao
    Wen, Wanli
    Wong, Kai-Kit
    Quek, Tony Q. S.
    Zhang, Jun
    Zhu, Hongbo
    IEEE WIRELESS COMMUNICATIONS, 2021, 28 (02) : 32 - 38
  • [42] Blockchain-Based Federated Learning for Device Failure Detection in Industrial IoT
    Zhang, Weishan
    Lu, Qinghua
    Yu, Qiuyu
    Li, Zhaotong
    Liu, Yue
    Lo, Sin Kit
    Chen, Shiping
    Xu, Xiwei
    Zhu, Liming
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (07) : 5926 - 5937
  • [43] RobustFL: Robust Federated Learning Against Poisoning Attacks in Industrial IoT Systems
    Zhang, Jiale
    Ge, Chunpeng
    Hu, Feng
    Chen, Bing
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (09) : 6388 - 6397
  • [44] Federated Learning With Cooperating Devices: A Consensus Approach for Massive IoT Networks
    Savazzi, Stefano
    Nicoli, Monica
    Rampa, Vittorio
    IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (05) : 4641 - 4654
  • [45] Learning-Based Flexible Cross-Layer Optimization for Ultrareliable and Low-Latency Applications in IoT Scenarios
    Zhang, Jingxuan
    Xu, Xiaodong
    Zhang, Kangjie
    Han, Shujun
    Tao, Xiaofeng
    Zhang, Ping
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (16) : 14629 - 14643
  • [46] Optimizing Privacy and Latency Tradeoffs in Split Federated Learning Over Wireless Networks
    Lee, Joohyung
    Seif, Mohamed
    Cho, Jungchan
    Poor, H. Vincent
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2024, 13 (12) : 3439 - 3443
  • [47] Energy-Efficient Federated Learning in IoT Networks
    Kong, Deyi
    You, Zehua
    Chen, Qimei
    Wang, Juanjuan
    Hu, Jiwei
    Xiong, Yunfei
    Wu, Jing
    SMART COMPUTING AND COMMUNICATION, 2022, 13202 : 26 - 36
  • [48] Joint Optimization of Convergence and Latency for Hierarchical Federated Learning Over Wireless Networks
    Sun, Haofeng
    Tian, Hui
    Zheng, Jingheng
    Ni, Wanli
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2024, 13 (03) : 691 - 695
  • [49] Edge Caching with Federated Unlearning for Low-Latency V2X Communications
    Wang, Pengfei
    Yan, Zhaohong
    Obaidat, Mohammad S.
    Yuan, Zhiwei
    Yang, Leyou
    Zhang, Junxiang
    Wei, Zongzheng
    Zhang, Qiang
    IEEE COMMUNICATIONS MAGAZINE, 2024, 62 (10) : 118 - 124
  • [50] CEDAR: A Low-Latency and Distributed Strategy for Packet Recovery in Wireless Networks
    Qiu, Chenxi
    Shen, Haiying
    Soltani, Sohraab
    Sapra, Karan
    Jiang, Hao
    Hallstrom, Jason O.
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2015, 23 (05) : 1514 - 1527