MITEA: A dataset for machine learning segmentation of the left ventricle in 3D echocardiography using subject-specific labels from cardiac magnetic resonance imaging

被引:7
作者
Zhao, Debbie [1 ]
Ferdian, Edward [2 ]
Talou, Gonzalo D. Maso D. [1 ]
Quill, Gina M. [1 ]
Gilbert, Kathleen [1 ]
Wang, Vicky Y. [1 ]
Gamage, Thiranja P. Babarenda P. [1 ]
Pedrosa, Joao [3 ]
D'hooge, Jan [4 ]
Sutton, Timothy M. [5 ]
Lowe, Boris S. [6 ]
Legget, Malcolm E. [7 ]
Ruygrok, Peter N. [6 ,7 ]
Doughty, Robert N. [6 ,7 ]
Camara, Oscar [8 ]
Young, Alistair A. [2 ,9 ]
Nash, Martyn P. [1 ,10 ]
机构
[1] Univ Auckland, Auckland Bioengn Inst, Auckland, New Zealand
[2] Univ Auckland, Dept Anat & Med Imaging, Auckland, New Zealand
[3] Inst Syst & Comp Engn Technol & Sci INESC TEC, Porto, Portugal
[4] Katholieke Univ Leuven, Dept Cardiovasc Sci, Leuven, Belgium
[5] Middlemore Hosp, Counties Manukau Hlth Cardiol, Auckland, New Zealand
[6] Auckland City Hosp, Green Lane Cardiovasc Serv, Auckland, New Zealand
[7] Univ Auckland, Dept Med, Auckland, New Zealand
[8] Univ Pompeu Fabra, Dept Informat & Commun Technol, Barcelona, Spain
[9] Kings Coll London, Dept Biomed Engn, London, England
[10] Univ Auckland, Dept Engn Sci, Auckland, New Zealand
来源
FRONTIERS IN CARDIOVASCULAR MEDICINE | 2023年 / 9卷
关键词
3D echocardiography (3DE); machine learning (ML); segmentation (image processing); left ventricle (LV); multimodal imaging; cardiac magnetic resonance (CMR) imaging; domain adaptation; Cardiac Atlas Project; 3-DIMENSIONAL ECHOCARDIOGRAPHY; ADAPTATION; TRACKING; VOLUME; SUPINE;
D O I
10.3389/fcvm.2022.1016703
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Segmentation of the left ventricle (LV) in echocardiography is an important task for the quantification of volume and mass in heart disease. Continuing advances in echocardiography have extended imaging capabilities into the 3D domain, subsequently overcoming the geometric assumptions associated with conventional 2D acquisitions. Nevertheless, the analysis of 3D echocardiography (3DE) poses several challenges associated with limited spatial resolution, poor contrast-to-noise ratio, complex noise characteristics, and image anisotropy. To develop automated methods for 3DE analysis, a sufficiently large, labeled dataset is typically required. However, ground truth segmentations have historically been difficult to obtain due to the high inter-observer variability associated with manual analysis. We address this lack of expert consensus by registering labels derived from higher-resolution subject-specific cardiac magnetic resonance (CMR) images, producing 536 annotated 3DE images from 143 human subjects (10 of which were excluded). This heterogeneous population consists of healthy controls and patients with cardiac disease, across a range of demographics. To demonstrate the utility of such a dataset, a state-of-the-art, self-configuring deep learning network for semantic segmentation was employed for automated 3DE analysis. Using the proposed dataset for training, the network produced measurement biases of -9 +/- 16 ml, -1 +/- 10 ml, -2 +/- 5 %, and 5 +/- 23 g, for end-diastolic volume, end-systolic volume, ejection fraction, and mass, respectively, outperforming an expert human observer in terms of accuracy as well as scan-rescan reproducibility. As part of the Cardiac Atlas Project, we present here a large, publicly available 3DE dataset with ground truth labels that leverage the higher resolution and contrast of CMR, to provide a new benchmark for automated 3DE analysis. Such an approach not only reduces the effect of observer-specific bias present in manual 3DE annotations, but also enables the development of analysis techniques which exhibit better agreement with CMR compared to conventional methods. This represents an important step for enabling more efficient and accurate diagnostic and prognostic information to be obtained from echocardiography.
引用
收藏
页数:15
相关论文
共 47 条
  • [1] Normal Values of Left Ventricular Size and Function on Three-Dimensional Echocardiography: Results of the World Alliance Societies of Echocardiography Study
    Addetia, Karima
    Miyoshi, Tatsuya
    Amuthan, Vivekanandan
    Citro, Rodolfo
    Daimon, Masao
    Fajardo, Pedro Gutierrez
    Kasliwal, Ravi R.
    Kirkpatrick, James N.
    Monaghan, Mark J.
    Muraru, Denisa
    Ogunyankin, Kofo O.
    Park, Seung Woo
    Ronderos, Ricardo E.
    Sadeghpour, Anita
    Scalia, Gregory M.
    Takeuchi, Masaaki
    Tsang, Wendy
    Tucay, Edwin S.
    Rodrigues, Ana Clara Tude
    Zhang, Yun
    Hitschrich, Niklas
    Blankenhagen, Michael
    Degel, Markus
    Schreckenberg, Marcus
    Mor-Avi, Victor
    Asch, Federico M.
    Lang, Roberto M.
    [J]. JOURNAL OF THE AMERICAN SOCIETY OF ECHOCARDIOGRAPHY, 2022, 35 (05) : 449 - 459
  • [2] Ahrens J., 2005, The Visualization Handbook, P717, DOI [10.1016/B978-012387582-2/50038-1, DOI 10.1016/B978-012387582-2/50038-1]
  • [3] A Pipeline for the Generation of Realistic 3D Synthetic Echocardiographic Sequences: Methodology and Open-Access Database
    Alessandrini, M.
    De Craene, M.
    Bernard, O.
    Giffard-Roisin, S.
    Allain, P.
    Waechter-Stehle, I.
    Weese, J.
    Saloux, E.
    Delingette, H.
    Sermesant, M.
    D'hooge, J.
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (07) : 1436 - 1451
  • [4] Automated cardiovascular magnetic resonance image analysis with fully convolutional networks
    Bai, Wenjia
    Sinclair, Matthew
    Tarroni, Giacomo
    Oktay, Ozan
    Rajchl, Martin
    Vaillant, Ghislain
    Lee, Aaron M.
    Aung, Nay
    Lukaschuk, Elena
    Sanghvi, Mihir M.
    Zemrak, Filip
    Fung, Kenneth
    Paiva, Jose Miguel
    Carapella, Valentina
    Kim, Young Jin
    Suzuki, Hideaki
    Kainz, Bernhard
    Matthews, Paul M.
    Petersen, Steffen E.
    Piechnik, Stefan K.
    Neubauer, Stefan
    Glocker, Ben
    Rueckert, Daniel
    [J]. JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2018, 20
  • [5] 3-D ECHOCARDIOGRAPHY IS FEASIBLE AND MORE REPRODUCIBLE THAN 2-D ECHOCARDIOGRAPHY FOR IN-TRAINING ECHOCARDIOGRAPHERS IN FOLLOW-UP OF PATIENTS WITH HEART FAILURE WITH REDUCED EJECTION FRACTION
    Baldea, Sorina Mihaila
    Velcea, Andreea Elena
    Rimbas, Roxana Cristina
    Andronic, Anca
    Matei, Lavinia
    Calin, Simona Ionela
    Muraru, Denisa
    Badano, Luigi Paolo
    Vinereanu, Dragos
    [J]. ULTRASOUND IN MEDICINE AND BIOLOGY, 2021, 47 (03) : 499 - 510
  • [6] Barbosa D., 2014, MIDAS J, V10, P17
  • [7] Standardized Evaluation System for Left Ventricular Segmentation Algorithms in 3D Echocardiography
    Bernard, Olivier
    Bosch, Johan G.
    Heyde, Brecht
    Alessandrini, Martino
    Barbosa, Daniel
    Camarasu-Pop, Sorina
    Cervenansky, Frederic
    Valette, Sebastien
    Mirea, Oana
    Bernier, Michel
    Jodoin, Pierre-Marc
    Domingos, Jaime Santo
    Stebbing, Richard V.
    Keraudren, Kevin
    Oktay, Ozan
    Caballero, Jose
    Shi, Wei
    Rueckert, Daniel
    Milletari, Fausto
    Ahmadi, Seyed-Ahmad
    Smistad, Erik
    Lindseth, Frank
    van Stralen, Maartje
    Wang, Chen
    Smedby, Orjan
    Donal, Erwan
    Monaghan, Mark
    Papachristidis, Alex
    Geleijnse, Marcel L.
    Galli, Elena
    D'hooge, Jan
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (04) : 967 - 977
  • [8] A Multicenter, Scan-Rescan, Human and Machine Learning CMR Study to Test Generalizability and Precision in Imaging Biomarker Analysis
    Bhuva, Anish N.
    Bai, Wenjia
    Lau, Clement
    Davies, Rhodri H.
    Ye, Yang
    Bulluck, Heeraj
    McAlindon, Elisa
    Culotta, Veronica
    Swoboda, Peter P.
    Captur, Gabriella
    Treibel, Thomas A.
    Augusto, Joao B.
    Knott, Kristopher D.
    Seraphim, Andreas
    Cole, Graham D.
    Petersen, Steffen E.
    Edwards, Nicola C.
    Greenwood, John P.
    Bucciarelli-Ducci, Chiara
    Hughes, Alun D.
    Rueckert, Daniel
    Moon, James C.
    Manisty, Charlotte H.
    [J]. CIRCULATION-CARDIOVASCULAR IMAGING, 2019, 12 (10)
  • [9] STATISTICAL METHODS FOR ASSESSING AGREEMENT BETWEEN TWO METHODS OF CLINICAL MEASUREMENT
    BLAND, JM
    ALTMAN, DG
    [J]. LANCET, 1986, 1 (8476) : 307 - 310
  • [10] Improving the Generalizability of Convolutional Neural Network-Based Segmentation on CMR Images
    Chen, Chen
    Bai, Wenjia
    Davies, Rhodri H.
    Bhuva, Anish N.
    Manisty, Charlotte H.
    Augusto, Joao B.
    Moon, James C.
    Aung, Nay
    Lee, Aaron M.
    Sanghvi, Mihir M.
    Fung, Kenneth
    Paiva, Jose Miguel
    Petersen, Steffen E.
    Lukaschuk, Elena
    Piechnik, Stefan K.
    Neubauer, Stefan
    Rueckert, Daniel
    [J]. FRONTIERS IN CARDIOVASCULAR MEDICINE, 2020, 7