Numerical investigation on heat transfer characteristics of liquid metal cross flow over tube bundles

被引:16
作者
Xie, Xiaoyang [1 ]
Zhao, Houjian [2 ]
Li, Xiaowei [1 ]
Wu, Xinxin [1 ]
Niu, Fenglei [2 ]
机构
[1] Tsinghua Univ, Inst Nucl & New Energy Technol, Collaborat Innovat Ctr Adv Nucl Energy Technol, Key Lab Adv Reactor Engn & Safety Minist Educ, Beijing 100084, Peoples R China
[2] North China Elect Power Univ, Beijing Key Lab Pass Safety Technol Nucl Energy, Beijing 102206, Peoples R China
基金
中国国家自然科学基金;
关键词
Cross flow; Inline tube bundle; Liquid metal; Nusselt number; TRANSFER TURBULENCE MODEL; CHANNEL FLOW; FORCED-CONVECTION; FLUCTUATIONS; SIMULATIONS; DNS; REYNOLDS;
D O I
10.1016/j.anucene.2022.109465
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Helical tube Once Through Steam Generator (OTSG) could further improve the compactness of liquid metal cooled reactors. The heat transfer characteristics of liquid metal cross flow over inline tube bundles is important for the design of helical tube OTSG. In order to consider the low molecular Prandtl number (Pr) effects on turbulent heat flux, different turbulent Prandtl number (Pr-t) models are validated by a Direct Numerical Simulation (DNS) database for convective Poiseuille flow. Applicability of the Pry and turbulence models for convection with flow separation or adverse pressure gradients is further assessed by DNS results of backward-facing step convection with a fluid Prandt1 number of 0.025. Heat transfer of liquid metal cross flow over tube bundle is simulated with k-omega SST turbulence model and the selected Pr, model. Heat transfer performances of cross flow over tube bundles with different Pr, Reynolds number (Re) and geometry parameters are simulated. The very large molecular thermal diffusivity (a) of liquid metal results in different temperature distributions and heat transfer characteristics in tube bundles compared with conventional fluids (Pr around and higher than 1). The normalized heat transfer coefficients of liquid metal are enhanced on the upwind side of the tubes and are weaken on the rear side of the tubes compared with conventional fluids. The increments of Pr and Re both weaken the low Pr effect of liquid metal and lead to circumferential heat transfer characteristic more similar to that of conventional fluids. Geometry parameters have little impact on the time and area averaged Nu of liquid metal cross flow over tube bundles. A new Nusselt (Nu) number correlation with wide applicable ranges is proposed based on the numerical results.
引用
收藏
页数:16
相关论文
共 49 条
[1]   Surface heat-flux fluctuations in a turbulent channel flow up to Reτ=1020 with Pr=0.025 and 0.71 [J].
Abe, H ;
Kawamura, H ;
Matsuo, Y .
INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2004, 25 (03) :404-419
[2]  
Abe H., 2002, Proc. 9th European Turbulence Conf. on Advances in Turbulence, P399
[3]   A NEW TURBULENCE MODEL FOR PREDICTING FLUID-FLOW AND HEAT-TRANSFER IN SEPARATING AND REATTACHING FLOWS .2. THERMAL FIELD CALCULATIONS [J].
ABE, K ;
KONDOH, T ;
NAGANO, Y .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1995, 38 (08) :1467-1481
[4]   DNS of thermal channel flow up to Reτ=2000 for medium to low Prandtl numbers [J].
Alcantara-Avila, F. ;
Hoyas, S. ;
Perez-Quiles, M. J. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 127 :349-361
[5]  
Borishanskiy V., 1963, SOV ATOM ENERGY+, V13, P183
[6]   Direct and large eddy simulation of turbulent heat transfer at very low Prandtl number: Application to lead-bismuth flows [J].
Bricteux, L. ;
Duponcheel, M. ;
Winckelmans, G. ;
Tiselj, I. ;
Bartosiewicz, Y. .
NUCLEAR ENGINEERING AND DESIGN, 2012, 246 :91-97
[7]   Helical coil thermal-hydraulic model for supercritical lead cooled fast reactor steam generators [J].
Caramello, Marco ;
Bertani, Cristina ;
De Salve, Mario ;
Panella, Bruno .
APPLIED THERMAL ENGINEERING, 2016, 101 :693-698
[8]  
Cerroni D., 2015, J PHYS C SER, V655, P12
[9]   A reinterpretation of the turbulent Prandtl number [J].
Churchill, SW .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2002, 41 (25) :6393-6401
[10]   A k-Ω-kθ-Ωθ four parameter logarithmic turbulence model for liquid metals [J].
Da Via, R. ;
Manservisi, S. ;
Menghini, F. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 101 :1030-1041