Supervised-unsupervised combined deep convolutional neural networks for high-fidelity pansharpening

被引:43
|
作者
Liu, Qiang [1 ]
Meng, Xiangchao [1 ,2 ,3 ]
Shao, Feng [1 ]
Li, Shutao [2 ]
机构
[1] Ningbo Univ, Fac Elect Engn & Comp Sci, Ningbo, Peoples R China
[2] Hunan Univ, Coll Elect & Informat Engn, Changsha, Peoples R China
[3] Ningbo Univ, Ningbo 315211, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Pansharpening; High fidelity; Convolutional neural networks (CNN); Unsupervised learning; Image fusion; PAN-SHARPENING METHOD; FUSION; REGRESSION;
D O I
10.1016/j.inffus.2022.08.018
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning for pansharpening method has become a hot research topic in recent years due to the impressive performance, and the convolutional neural networks (CNN)-based pansharpening methods on Wald's protocol (i. e., the general adoption of the network learned at a coarser reduced resolution scale to the finer full resolution) have been dominating for a long time in this research area. However, the scale-invariant assumption may not be accurate enough to make full use of the spatial and spectral information of original panchromatic (PAN) and multispectral (MS) images at full resolution. In this paper, a Supervised-Unsupervised combined Fusion Network (SUFNet) for high-fidelity pansharpening is proposed to alleviate this problem. First, by comprehensively considering the robustness of the network with reference label images, a novel supervised network based on Wald's protocol is proposed by integrating the multiscale mechanisms, dilated convolution, and skip connection, termed SMDSNet. Then, an interesting Unsupervised Spatial-Spectral Compensation Network (USSCNet) without real high-spatial-resolution (HR) MS label image is proposed to enhance the spatial and spectral fidelity of the SMDSNet. The qualitative and quantitative results in reduced resolution and full resolution experiments on different satellite datasets demonstrate the competitive performance of the proposed method. Furthermore, the proposed USSCNet can be employed as a universal spatial-spectral compensation framework for other pan -sharpening methods.
引用
收藏
页码:292 / 304
页数:13
相关论文
共 50 条
  • [1] Pansharpening via Unsupervised Convolutional Neural Networks
    Luo, Shuyue
    Zhou, Shangbo
    Feng, Yong
    Xie, Jiangan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 4295 - 4310
  • [2] Pansharpening by Convolutional Neural Networks in the Full Resolution Framework
    Ciotola, Matteo
    Vitale, Sergio
    Mazza, Antonio
    Poggi, Giovanni
    Scarpa, Giuseppe
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [3] Spectral-Fidelity Convolutional Neural Networks for Hyperspectral Pansharpening
    He, Lin
    Zhu, Jiawei
    Li, Jun
    Meng, Deyu
    Chanussot, Jocelyn
    Plaza, Antonio J.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 5898 - 5914
  • [4] Detail Injection-Based Deep Convolutional Neural Networks for Pansharpening
    Deng, Liang-Jian
    Vivone, Gemine
    Jin, Cheng
    Chanussot, Jocelyn
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (08): : 6995 - 7010
  • [5] Pansharpening Techniques: Optimizing the Loss Function for Convolutional Neural Networks
    Restaino, Rocco
    REMOTE SENSING, 2025, 17 (01)
  • [6] High-Fidelity Component Substitution Pansharpening by the Fitting of Substitution Data
    Xu, Qizhi
    Li, Bo
    Zhang, Yun
    Ding, Lin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (11): : 7380 - 7392
  • [7] Pansharpening by Convolutional Neural Networks
    Masi, Giuseppe
    Cozzolino, Davide
    Verdoliva, Luisa
    Scarpa, Giuseppe
    REMOTE SENSING, 2016, 8 (07)
  • [8] Unsupervised Deep Learning-Based Pansharpening With Jointly Enhanced Spectral and Spatial Fidelity
    Ciotola, Matteo
    Poggi, Giovanni
    Scarpa, Giuseppe
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [9] Pansharpening via Detail Injection Based Convolutional Neural Networks
    He, Lin
    Rao, Yizhou
    Li, Jun
    Chanussot, Jocelyn
    Plaza, Antonio
    Zhu, Jiawei
    Li, Bo
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (04) : 1188 - 1204
  • [10] Super-Resolution-Guided Progressive Pansharpening Based on a Deep Convolutional Neural Network
    Cai, Jiajun
    Huang, Bo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (06): : 5206 - 5220