Development and Characterization of Nano-Al2O3, Cr2O3, and TiO2 Dispersed Mo Alloys Fabricated by Powder Metallurgy

被引:1
作者
Rao, G. M. [1 ]
Akhil, M. [1 ]
Das, B. [1 ]
Khan, A. R. [1 ]
Patra, A. [1 ]
Chaira, D. [1 ]
机构
[1] Natl Inst Technol Rourkela, Dept Met & Mat Engn, Rourkela 769008, Odisha, India
关键词
density; hardness; Mo-based alloys; nano-oxides; oxidation; wear; HIGH-TEMPERATURE OXIDATION; STRENGTHENED ODS MOLYBDENUM; NANO-SIZED ZRO2; W-NI-MO; MECHANICAL-PROPERTIES; TENSILE PROPERTIES; MICROSTRUCTURE; BEHAVIOR; TUNGSTEN; WEAR;
D O I
10.1007/s11665-022-07215-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The study reports the fabrication of 1.0 wt.% nano-Al2O3, Cr2O3, and TiO2 dispersed Mo alloys by mechanical alloying for 20 h and conventional sintering at 1450 degrees C with 2 h of soaking period. The 20-h milled powder evidences the encapsulation of oxide particles inside Mo particle. High-resolution transmission electron microscopy (HRTEM) reveals that oxide particles are in-coherent with Mo matrix in Mo-Al2O3 alloy. X-ray diffraction study (XRD) evidences MoO2 phase formation and oxide phases in the sintered alloys. Mo-TiO2 alloy exhibits maximum sintered density compared to other alloys. The investigation reports an excellent bulk Vickers hardness of 645 HV for Mo-Al2O3 alloy. Maximum compressive strength and % compressive strain at maximum compressive load are evident in Mo-Cr2O3 alloy. Mo-Al2O3 and Mo-Cr2O3 alloys show enhanced wear resistance against Mo-TiO2 alloy, owing to the higher fraction of MoO2 oxide precipitation. The oxides hinder the dislocation motion, responsible for achieving improved wear resistance. Mo-Al2O3 alloy records lower oxidation and spallation/blistering at 1000 degrees C for 10 h compared to other alloys.
引用
收藏
页码:1683 / 1706
页数:24
相关论文
共 113 条
  • [31] Microstructure and high-temperature mechanical properties of second-phase enhanced Mo-La2O3-ZrC alloys post-treated by cross rolling
    Gan, Jianning
    Gong, Qianming
    Jiang, Yanqi
    Chen, Hao
    Huang, Yilun
    Du, Kai
    Li, Yuyao
    Zhao, Ming
    Lin, Feng
    Zhuang, Daming
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 796 : 167 - 175
  • [32] Gaskell, 2018, INTRO THERMODYNAMICS, P436
  • [33] High temperature oxidation behaviour of yttria ( Y2O3) coated low alloy steel
    Ghosh, D.
    Mukherjee, S.
    Das, S.
    [J]. SURFACE ENGINEERING, 2014, 30 (07) : 524 - 528
  • [34] Creep of an oxidation resistant coated Mo-9Si-8B alloy
    Gombola, Camelia
    Schliephake, Daniel
    Heilmaier, Martin
    Perepezko, John H.
    [J]. INTERMETALLICS, 2020, 120 (120)
  • [35] Microstructure and Sliding Wear Resistance of Plasma Sprayed Al2O3-Cr2O3-TiO2 Ternary Coatings from Blends of Single Oxides
    Grimm, Maximilian
    Conze, Susan
    Berger, Lutz-Michael
    Paczkowski, Gerd
    Lindner, Thomas
    Lampke, Thomas
    [J]. COATINGS, 2020, 10 (01)
  • [36] Guel IE., 2003, MICROSC MICROANAL, V9, P616, DOI [10.1017/S1431927603443080, DOI 10.1017/S1431927603443080]
  • [37] OXIDATION OF MOLYBDENUM 550-DEGREES-C TO 1700-DEGREES-C
    GULBRANSEN, EA
    ANDREW, KF
    BRASSART, FA
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1963, 110 (09) : 952 - 959
  • [38] Microstructure and oxidation resistance behavior of lanthanum oxide-doped Mo-12Si-8.5B Alloys
    Guo-jun, Zhang
    Hao, Kou
    Qian, Dang
    Gang, Liu
    Jun, Sun
    [J]. INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2012, 30 (01) : 6 - 11
  • [39] Secondary phases formation in lanthanum-doped titanium-zirconium-molybdenum alloy
    Hu, Bo-liang
    Wang, Kuai-she
    Hu, Ping
    Zhou, Yu-hang
    Deng, Jie
    Chen, Wen-jing
    Feng, Peng-fa
    Zhang, Ju-ping
    Volinsky, Alex A.
    Yu, Hailiang
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 757 : 340 - 347
  • [40] Refined microstructure and enhanced mechanical properties in Mo-Y2O3 alloys prepared by freeze-drying method and subsequent low temperature sintering
    Hu, Weiqiang
    Sun, Tao
    Liu, Chenxi
    Yu, Liming
    Ahamad, Tansir
    Ma, Zongqing
    [J]. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2021, 88 : 36 - 44