Solution methodologies for minimizing a sum of pointwise minima of two functions

被引:0
|
作者
Zuo, Xinyi [1 ]
Jiang, Yi [1 ]
机构
[1] Sichuan Normal Univ, Sch Math Sci, Visual Comp & Virtual Real Key Lab, Chengdu 610066, Sichuan, Peoples R China
基金
芬兰科学院; 中国国家自然科学基金;
关键词
Smooth approximation; ADMM algorithm; DC algorithm; GLOBAL CONVERGENCE; SPARSE; DIFFERENCE;
D O I
10.1007/s11590-022-01866-w
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, an NP-hard problem of minimizing a sum of pointwise minima of two functions is considered. Using a new equivalent formula, we propose a smooth approximation and an ADMM algorithm for solving the problem. In numerical experiments, we survey four methods including the algorithms proposed in this paper and the known methods. The results of numerical experiments indicate that the performance of each of algorithms could highly depend on the problem and simulation settings.
引用
收藏
页码:75 / 87
页数:13
相关论文
共 50 条
  • [1] Solution methodologies for minimizing a sum of pointwise minima of two functions
    Xinyi Zuo
    Yi Jiang
    Optimization Letters, 2023, 17 : 75 - 87
  • [2] A GENERAL ITERATIVE METHOD FOR MINIMIZING THE SUM OF TWO CONVEX FUNCTIONS
    Buranakorn, Kan
    Plubtieng, Somyot
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2017, 18 (11) : 2033 - 2045
  • [3] Minimizing a sum of submodular functions
    Kolmogorov, Vladimir
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (15) : 2246 - 2258
  • [4] A stochastic method for minimizing functions with many minima
    Ye, H
    Lin, ZP
    NEURAL NETWORKS FOR SIGNAL PROCESSING XII, PROCEEDINGS, 2002, : 289 - 296
  • [5] A proximal alternating linearization method for minimizing the sum of two convex functions
    ZHANG WenXing
    CAI XingJu
    JIA ZeHui
    Science China(Mathematics), 2015, 58 (10) : 2225 - 2244
  • [6] Fast alternating linearization methods for minimizing the sum of two convex functions
    Donald Goldfarb
    Shiqian Ma
    Katya Scheinberg
    Mathematical Programming, 2013, 141 : 349 - 382
  • [7] A proximal alternating linearization method for minimizing the sum of two convex functions
    Zhang WenXing
    Cai XingJu
    Jia ZeHui
    SCIENCE CHINA-MATHEMATICS, 2015, 58 (10) : 2225 - 2244
  • [8] A proximal alternating linearization method for minimizing the sum of two convex functions
    WenXing Zhang
    XingJu Cai
    ZeHui Jia
    Science China Mathematics, 2015, 58 : 1 - 20
  • [9] Fast alternating linearization methods for minimizing the sum of two convex functions
    Goldfarb, Donald
    Ma, Shiqian
    Scheinberg, Katya
    MATHEMATICAL PROGRAMMING, 2013, 141 (1-2) : 349 - 382
  • [10] Minimizing a sum of clipped convex functions
    Barratt, Shane
    Angeris, Guillermo
    Boyd, Stephen
    OPTIMIZATION LETTERS, 2020, 14 (08) : 2443 - 2459