SAUNet plus plus : an automatic segmentation model of COVID-19 lesion from CT slices

被引:30
|
作者
Xiao, Hanguang [1 ]
Ran, Zhiqiang [1 ,2 ]
Mabu, Shingo [2 ]
Li, Yuewei [1 ]
Li, Li [1 ]
机构
[1] Chongqing Univ Technol, Sch Artificial Intelligence, Chongqing 401135, Peoples R China
[2] Yamaguchi Univ, Grad Sch Sci & Technol Innovat, Yamaguchi 7558611, Japan
来源
VISUAL COMPUTER | 2023年 / 39卷 / 06期
基金
中国国家自然科学基金;
关键词
Coronavirus disease 2019 (COVID-19); Image segmentation; Computed tomography (CT); Squeeze excitation residual (SER); Atrous spatial pyramid pooling (ASPP); Generalized dice loss (GDL); LUNG INFECTION SEGMENTATION; NETWORK; ATTENTION;
D O I
10.1007/s00371-022-02414-4
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The coronavirus disease 2019 (COVID-19) epidemic has spread worldwide and the healthcare system is in crisis. Accurate, automated and rapid segmentation of COVID-19 lesion in computed tomography (CT) images can help doctors diagnose and provide prognostic information. However, the variety of lesions and small regions of early lesion complicate their segmentation. To solve these problems, we propose a new SAUNet++ model with squeeze excitation residual (SER) module and atrous spatial pyramid pooling (ASPP) module. The SER module can assign more weights to more important channels and mitigate the problem of gradient disappearance; the ASPP module can obtain context information by atrous convolution using various sampling rates. In addition, the generalized dice loss (GDL) can reduce the correlation between lesion size and dice loss, and is introduced to solve the problem of small regions segmentation of COVID-19 lesion. We collected multinational CT scan data from China, Italy and Russia and conducted extensive comparative and ablation studies. The experimental results demonstrated that our method outperforms state-of-the-art models and can effectively improve the accuracy of COVID-19 lesion segmentation on the dice similarity coefficient (our: 87.38% vs. U-Net++: 84.25%), sensitivity (our: 93.28% vs. U-Net++: 89.85%) and Hausdorff distance (our: 19.99 mm vs. U-Net++: 26.79 mm), respectively.
引用
收藏
页码:2291 / 2304
页数:14
相关论文
共 50 条
  • [31] ADID-UNET—a segmentation model for COVID-19 infection from lung CT scans
    Raj A.N.J.
    Zhu H.
    Khan A.
    Zhuang Z.
    Yang Z.
    Mahesh G.V.V.
    Karthik G.
    PeerJ Computer Science, 2021, 7 : 1 - 34
  • [32] ADID-UNET-a segmentation model for COVID-19 infection from lung CT scans
    Raj, Alex Noel Joseph
    Zhu, Haipeng
    Khan, Asiya
    Zhuang, Zhemin
    Yang, Zengbiao
    Mahesh, Vijayalakshmi G. V.
    Karthik, Ganesan
    PEERJ COMPUTER SCIENCE, 2021,
  • [33] CMM: A CNN-MLP Model for COVID-19 Lesion Segmentation and Severity Grading
    Lu, Fangfang
    Zhang, Zhihao
    Zhao, Shuai
    Lin, Xiantian
    Zhang, Zhengyu
    Jin, Bei
    Gu, Weiyan
    Chen, Jingjing
    Wu, Xiaoxin
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2024, 21 (04) : 789 - 802
  • [34] Collective intelligent strategy for improved segmentation of COVID-19 from CT
    Das, Surochita Pal
    Mitra, Sushmita
    Shankar, B. Uma
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 235
  • [35] LGBTQI plus Justice during the COVID-19 crisis
    Santos, Ana Cristina
    EUROPEAN JOURNAL OF WOMENS STUDIES, 2022, 29 (1_SUPPL) : 157S - 163S
  • [36] Bamlanivimab plus Etesevimab in Mild or Moderate Covid-19
    Dougan, M.
    Nirula, A.
    Azizad, M.
    Mocherla, B.
    Gottlieb, R. L.
    Chen, P.
    Hebert, C.
    Perry, R.
    Boscia, J.
    Heller, B.
    Morris, J.
    Crystal, C.
    Igbinadolor, A.
    Huhn, G.
    Cardona, J.
    Shawa, I
    Kumar, P.
    Adams, A. C.
    Van Naarden, J.
    Custer, K. L.
    Durante, M.
    Oakley, G.
    Schade, A. E.
    Holzer, T. R.
    Ebert, P. J.
    Higgs, R. E.
    Kallewaard, N. L.
    Sabo, J.
    Patel, D. R.
    Dabora, M. C.
    Klekotka, P.
    Shen, L.
    Skovronsky, D. M.
    NEW ENGLAND JOURNAL OF MEDICINE, 2021, 385 (15): : 1382 - 1392
  • [37] Baricitinib plus Remdesivir for Hospitalized Adults with Covid-19
    Kalil, A. C.
    Patterson, T. F.
    Mehta, A. K.
    Tomashek, K. M.
    Wolfe, C. R.
    Ghazaryan, V.
    Marconi, V. C.
    Ruiz-Palacios, G. M.
    Hsieh, L.
    Kline, S.
    Tapson, V.
    Iovine, N. M.
    Jain, M. K.
    Sweeney, D. A.
    El Sahly, H. M.
    Branche, A. R.
    Pineda, J. Regalado
    Lye, D. C.
    Sandkovsky, U.
    Luetkemeyer, A. F.
    Cohen, S. H.
    Finberg, R. W.
    Jackson, P. E. H.
    Taiwo, B.
    Paules, C. I.
    Arguinchona, H.
    Erdmann, N.
    Ahuja, N.
    Frank, M.
    Oh, M.
    Kim, E. -S.
    Tan, S. Y.
    Mularski, R. A.
    Nielsen, H.
    Ponce, P. O.
    Taylor, B. S.
    Larson, L. A.
    Rouphael, N. G.
    Saklawi, Y.
    Cantos, V. D.
    Ko, E. R.
    Engemann, J. J.
    Amin, A. N.
    Watanabe, M.
    Billings, J.
    Elie, M. -C.
    Davey, R. T.
    Burgess, T. H.
    Ferreira, J.
    Green, M.
    NEW ENGLAND JOURNAL OF MEDICINE, 2021, 384 (09): : 795 - 807
  • [38] Baricitinib plus Remdesivir for Hospitalized Adults with Covid-19
    Andre C Kalil
    四川生理科学杂志, 2020, 42 (04) : 451 - 451
  • [39] Generalized Exponential Fuzzy Entropy Approach for Automatic Segmentation of Chest CT with COVID-19 Infection
    Alotaibi, Saud S.
    Elaraby, Ahmed
    COMPLEXITY, 2022, 2022
  • [40] MIX-NET: AUTOMATIC SEGMENTATION OF COVID-19 CT IMAGES BASED ON PARALLEL DESIGN
    Dong, Aimei
    Wang, Ruixin
    Lv, Guohua
    Zhao, Guixin
    Zhai, Yi
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 2145 - 2149