Wi-Fi SIMO Radar for Deep Learning-Based Sign Language Recognition

被引:2
作者
Lai, Yi-Chen [1 ]
Huang, Pin-Yu [1 ]
Horng, Tzyy-Sheng [1 ]
机构
[1] Natl Sun Yat Sen Univ, Dept Elect Engn, Kaohsiung 80424, Taiwan
来源
IEEE MICROWAVE AND WIRELESS TECHNOLOGY LETTERS | 2024年 / 34卷 / 06期
关键词
Wireless fidelity; Sign language; Sensors; Deep learning; Time series analysis; Radar; Passive radar; gesture detection; Gramian angular field (GAF); injection locking; passive radar; sign language recognition; single-input multiple-output (SIMO) radar; Wi-Fi sensing;
D O I
10.1109/LMWT.2024.3377712
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This study explores the use of Wi-Fi signals to recognize gestures and translate sign language. It employs an advanced passive radar system based on an injection-locked quadrature receiver (ILQR) in a single-input multiple-output (SIMO) setup. The system effectively detects 3-D hand motions for sign language using 2.4-GHz Wi-Fi signals from an access point (AP). Experimental data processing involves sampling pairs of baseband I-and Q-channel signals to create multiple output time series. These series are transformed into images using the Gramian angular field (GAF) method for deep learning. The images capture temporal and spatial information while minimizing noise interference. A deep learning model, combining convolutional neural networks (CNNs) and long short-term memory (LSTM) networks, achieves over 90% classification accuracy for ten Chinese sign language gestures from 10,000 labeled samples. Ultimately, the study successfully demonstrates a real-time sign language recognition prototype system using the proposed Wi-Fi sensing technology.
引用
收藏
页码:825 / 828
页数:4
相关论文
共 10 条
[1]  
Abdelnasser H, 2015, IEEE CONF COMPUT, P17, DOI 10.1109/INFCOMW.2015.7179321
[2]   Device free human gesture recognition using Wi-Fi CSI: A survey [J].
Ahmed, Hasmath Farhana Thariq ;
Ahmad, Hafisoh ;
Aravind, C., V .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2020, 87
[3]  
Lai YC, 2019, IEEE MTT S INT MICR, P293
[4]   Capturing User Behavior in Subjective Quality Assessment of OTT Video Service [J].
Li, Weiwei ;
Spachos, Petros ;
Chignell, Mark ;
Leon-Garcia, Alberto ;
Jiang, Jie ;
Zucherman, Leon .
2016 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2016,
[5]   WiFi Sensing with Channel State Information: A Survey [J].
Ma, Yongsen ;
Zhou, Gang ;
Wang, Shuangquan .
ACM COMPUTING SURVEYS, 2019, 52 (03)
[6]  
Mu-Cyun Tang, 2015, 2015 IEEE MTT-S International Microwave Symposium (IMS2015), P1, DOI 10.1109/MWSYM.2015.7167080
[7]   MDPose: Human Skeletal Motion Reconstruction Using WiFi Micro-Doppler Signatures [J].
Tang, Chong ;
Li, Wenda ;
Vishwakarma, Shelly ;
Shi, Fangzhan ;
Julier, Simon ;
Chetty, Kevin .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2024, 60 (01) :157-167
[8]  
Vitry, 2018, ENCODING TIME SERIES
[9]   Gesture Sensing Using Retransmitted Wireless Communication Signals Based on Doppler Radar Technology [J].
Wang, Fu-Kang ;
Tang, Mu-Cyun ;
Chiu, Yen-Chen ;
Horng, Tzyy-Sheng .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2015, 63 (12) :4592-4602
[10]   How text sentiment moderates the impact of motivational cues on crowdfunding campaigns [J].
Yuan, Xiang ;
Wang, Luyao ;
Yin, Xicheng ;
Wang, Hongwei .
FINANCIAL INNOVATION, 2021, 7 (01)