Gravitational-wave template banks for novel compact binaries

被引:12
作者
Schmidt, Stefano [1 ,2 ]
Gadre, Bhooshan [2 ]
Caudill, Sarah [3 ,4 ]
机构
[1] Nikhef, Sci Pk 105, NL-1098XG Amsterdam, Netherlands
[2] Univ Utrecht, Inst Gravitat & Subatom Phys GRASP, Princetonpl 1, NL-3584CC Utrecht, Netherlands
[3] Univ Massachusetts, Dept Phys, Dartmouth, MA 02747 USA
[4] Univ Massachusetts, Ctr Sci Comp & Visualizat Res, Dartmouth, MA 02747 USA
基金
美国国家科学基金会;
关键词
SEARCH; CHOICE; FILTERS;
D O I
10.1103/PhysRevD.109.042005
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We introduce a novel method to generate a bank of gravitational -waveform templates of binary black hole (BBH) mergers for matched -filter searches in LIGO, Virgo, and Kagra data. We derive a novel expression for the metric approximation to the distance between templates, which is suitable for precessing BBHs and/or systems with higher -order modes (HM) imprints and we use it to meaningfully define a template probability density across the parameter space. We employ a masked autoregressive normalizing flow model which can be conveniently trained to quickly reproduce the target probability distribution and sample templates from it. Thanks to the normalizing flow, our code takes a few hours to produce random template banks with millions of templates, making it particularly suitable for highdimensional spaces, such as those associated to precession, eccentricity and/or HM. After validating the performance of our method, we generate a bank for precessing black holes and a bank for aligned -spin binaries with HMs: with only 5% of the injections with fitting factor below the target of 0.97, we show that both banks cover satisfactorily the space. Our publicly released code MBANK will enable searches of high -dimensional regions of BBH signal space, hitherto unfeasible due to the prohibitive cost of bank generation.
引用
收藏
页数:27
相关论文
共 50 条
[41]   Detectability of the gravitational-wave background produced by magnetar giant flares [J].
Kouvatsos, Nikolaos ;
Lasky, Paul D. ;
Quitzow-James, Ryan ;
Sakellariadou, Mairi .
PHYSICAL REVIEW D, 2022, 106 (06)
[42]   A parallelized Bayesian approach to accelerated gravitational-wave background characterization [J].
Taylor, Stephen R. ;
Simon, Joseph ;
Schult, Levi ;
Pol, Nihan ;
Lamb, William G. .
PHYSICAL REVIEW D, 2022, 105 (08)
[43]   Reducing the number of templates for aligned-spin compact binary coalescence gravitational wave searches using metric-agnostic template nudging [J].
Indik, Nathaniel ;
Fehrmann, Henning ;
Harke, Franz ;
Krishnan, Badri ;
Nielsen, Alex B. .
PHYSICAL REVIEW D, 2018, 97 (12)
[44]   Geometric template bank for the detection of spinning low-mass compact binaries with moderate orbital eccentricity [J].
Phukon, Khun Sang ;
Schmidt, Patricia ;
Pratten, Geraint .
PHYSICAL REVIEW D, 2025, 111 (04)
[45]   Effectual template banks for upcoming compact binary searches in Advanced-LIGO and Virgo data [J].
Roy, Soumen ;
Sengupta, Anand S. ;
Ajith, Parameswaran .
PHYSICAL REVIEW D, 2019, 99 (02)
[46]   Prospects for Detecting Gravitational Waves from Eccentric Subsolar Mass Compact Binaries [J].
Wang, Yi-Fan ;
Nitz, Alexander H. .
ASTROPHYSICAL JOURNAL, 2021, 912 (01)
[47]   On similarity of binary black hole gravitational-wave skymaps: to observe or to wait? [J].
Vitale, Salvatore ;
Essick, Reed ;
Katsavounidis, Erik ;
Klimenko, Sergey ;
Vedovato, Gabriele .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 466 (01) :L78-L82
[48]   Linear polarization of the stochastic gravitational-wave background with pulsar timing arrays [J].
Kumar, Neha Anil ;
Caliskan, Mesut ;
Sato-Polito, Gabriela ;
Kamionkowski, Marc ;
Ji, Lingyuan .
PHYSICAL REVIEW D, 2024, 110 (04)
[49]   Simple parameter estimation using observable features of gravitational-wave signals [J].
Fairhurst, Stephen ;
Hoy, Charlie ;
Green, Rhys ;
Mills, Cameron ;
Usman, Samantha A. .
PHYSICAL REVIEW D, 2023, 108 (08)
[50]   Nonlinear Noise Cleaning in Gravitational-Wave Detectors With Convolutional Neural Networks [J].
Yu, Hang ;
Adhikari, Rana X. .
FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2022, 5