Workflow for fatigue life prediction of additive manufactured complex designs from powder bed fusion of Ti-6Al-4V

被引:2
作者
Kishore, Prateek [1 ,2 ]
Singh, Tanul [1 ]
Aher, Ravi [1 ]
Alankar, Alankar [2 ]
机构
[1] Eaton India Innovat Ctr, B6 Magarpatta SEZ, Pune 411013, Maharashtra, India
[2] Indian Inst Technol, Dept Mech Engn, Mumbai 400076, Maharashtra, India
关键词
Additive manufacturing; Surface roughness quantification; Probabilistic fatigue life; Extreme value statistics; Complex shapes; SURFACE-ROUGHNESS; CRACK-GROWTH; STRENGTH; DEFECTS; ALLOYS; BEHAVIOR; AM;
D O I
10.1016/j.ijfatigue.2023.107941
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Accurate fatigue life predictions of metal additive manufactured components are critical for design optimization and to leverage the advantages provided by additive manufacturing technology. As compared to conventional manufacturing processes, additive manufactured components have poor surface roughness and more internal porosities. Hot isostatic pressing has been shown to reduce porosities significantly whereas, surface improve-ment is not possible due to inaccessibility to the interior surfaces of complex shaped components. In the past, the fatigue prediction in presence of such surface defects has been explored using qualitative method such as ranking and quantitative method such as endurance limit prediction. A few fracture-based crack growth methods have been shown to validate with test for uniaxial coupon tests. The application of such methods for a complex shaped component with continuous variation of stress and roughness has not been explored. In this article, fatigue life prediction of thin-walled tubes manufactured using powder bed fusion of Ti-6Al-4V is documented. The Hartman-Schijve and Generalized Paris law equations are used with statistical variations of stress and surface roughness to predict the most probable life. The study shows a good correlation with physical test data. A detailed workflow for the process of fatigue life prediction is created.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] The Effect of Laser Powder Bed Fusion Process on Ti-6Al-4V Powder
    Memu, Firat
    Durlu, Nuri
    Yagmur, Aydin
    JOM, 2025, : 3906 - 3917
  • [42] Corrosion assessment of Ti-6Al-4V fabricated using laser powder-bed fusion additive manufacturing
    Chiu, Tse-Ming
    Mahmoudi, Mohamad
    Dai, Wei
    Elwany, Alaa
    Liang, Hong
    Castaneda, Homero
    ELECTROCHIMICA ACTA, 2018, 279 : 143 - 151
  • [43] Unravelling anisotropic deformation behaviour of Ti-6Al-4V ELI fabricated by powder bed fusion additive manufacturing
    Lee, Jeong-Rim
    Lee, Min-Su
    Yeon, Si Mo
    Yoon, Jongcheon
    Lee, Hyub
    Jun, Tea-Sung
    MATERIALS CHARACTERIZATION, 2023, 202
  • [44] On the size-dependent fatigue behaviour of laser powder bed fusion Ti-6Al-4V
    Zhang, Jieming S.
    Tang, Yuanbo T.
    Jin, Ruining
    Lui, Andrew
    Grant, Patrick S.
    Alabort, Enrique
    Cocks, Alan C. F.
    Reed, Roger C.
    ADDITIVE MANUFACTURING, 2024, 79
  • [45] Defect tolerance and fatigue limit prediction for laser powder bed fusion Ti6Al4V
    Syed, Abdul Khadar
    Vesga, Wilson
    Dutton, Ben
    Berentshaw, Tom
    Zhang, Xiang
    INTERNATIONAL JOURNAL OF FATIGUE, 2024, 184
  • [46] Fatigue of additive manufactured Ti-6Al-4V, Part I: The effects of powder feedstock, manufacturing, and post-process conditions on the resulting microstructure and defects
    Pegues, J. W.
    Shao, S.
    Shamsaei, N.
    Sanaei, N.
    Fatemi, A.
    Warner, D. H.
    Li, P.
    Phan, N.
    INTERNATIONAL JOURNAL OF FATIGUE, 2020, 132
  • [47] The influence of porosity on Ti-6Al-4V parts fabricated by laser powder bed fusion in the pursuit of process efficiency
    Kan, Wen Hao
    Gao, Mu
    Zhang, Xi
    Liang, Enquan
    Chiu, Ngai Sum Louis
    Lim, Chao Voon Samuel
    Huang, Aijun
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 119 (7-8) : 5417 - 5438
  • [48] Numerical Modeling of Distortion of Ti-6Al-4V Components Manufactured Using Laser Powder Bed Fusion
    Ninpetch, Patiparn
    Kowitwarangkul, Pruet
    Chalermkarnnon, Prasert
    Promoppatum, Patcharapit
    Chuchuay, Piyapat
    Rattanadecho, Phadungsak
    METALS, 2022, 12 (09)
  • [49] On the size and orientation effect in additive manufactured Ti-6Al-4V
    Barba, D.
    Alabort, C.
    Tang, Y. T.
    Viscasillas, M. J.
    Reed, R. C.
    Alabort, E.
    MATERIALS & DESIGN, 2020, 186 (186)
  • [50] Process variation in Laser Powder Bed Fusion of Ti-6Al-4V
    Chen, Zhuoer
    Wu, Xinhua
    Davies, Chris H. J.
    ADDITIVE MANUFACTURING, 2021, 41