Global Existence and Weak-Strong Uniqueness for Chemotaxis Compressible Navier-Stokes Equations Modeling Vascular Network Formation

被引:0
作者
Huo, Xiaokai [1 ]
Juengel, Ansgar [2 ]
机构
[1] Iowa State Univ, Dept Math, 411 Morrill Rd, Ames, IA 50011 USA
[2] Tech Univ Wien, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
基金
奥地利科学基金会;
关键词
Compressible Navier-Stokes equations; Chemotaxis force; Global existence of solutions; Weak-strong uniqueness; Relative energy; KELLER-SEGEL SYSTEM;
D O I
10.1007/s00021-023-00840-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A model of vascular network formation is analyzed in a bounded domain, consisting of the compressible Navier- Stokes equations for the density of the endothelial cells and their velocity, coupled to a reaction-diffusion equation for the concentration of the chemoattractant, which triggers the migration of the endothelial cells and the blood vessel formation. The coupling of the equations is realized by the chemotaxis force in the momentum balance equation. The global existence of finite energy weak solutions is shown for adiabatic pressure coefficients gamma > 8/5. The solutions satisfy a relative energy inequality, which allows for the proof of the weak-strong uniqueness property.
引用
收藏
页数:19
相关论文
共 22 条