PERIODIC SOLUTIONS OF SUPERLINEAR PLANAR HAMILTONIAN SYSTEMS WITH INDEFINITE TERMS

被引:1
作者
Wang, Shuang [1 ]
Liu, Chunlian [2 ]
机构
[1] Yancheng Teachers Univ, Sch Math & Stat, Xiwang St, Yancheng 224051, Peoples R China
[2] Nantong Univ, Sch Sci, Wenfeng St, Nantong 226019, Peoples R China
来源
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION | 2023年 / 13卷 / 05期
基金
中国国家自然科学基金;
关键词
Periodic solution; indefinite term; rotation number; superlinear Hamiltonian system; Poincare-Birkhoff theorem; SUBHARMONIC SOLUTIONS; ROTATION NUMBERS; P-LAPLACIAN; EQUATIONS; EIGENVALUES;
D O I
10.11948/20220426
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Existence of infinitely many periodic solutions for a planar Hamil-tonian system Jz ' = backward difference zH(t, z) is proved. We investigate the case in which backward difference zH(t, z) satisfies a general superlinear condition at infinity via rotation numbers and x partial differential partial differential x H(t, x, y) is an indefinite term. Our approach is based on the Poincare-Birkhoff theorem and the spiral property of large amplitude solutions. Our results generalize the classical result in Jacobowitz [13] and Hartman [12] for second order scalar equations.
引用
收藏
页码:2542 / 2554
页数:13
相关论文
共 22 条