Synergistic analysis of atmospheric pollutants NO2 and PM2.5 based on land use regression models: a case study of the Yangtze River Delta, China

被引:2
作者
Liu, Minxia [1 ]
Xiao, Shirui [1 ]
Wang, Yang [1 ]
Li, Le [1 ]
Mi, Jiale [1 ]
Wang, Siyuan [1 ]
机构
[1] Northwest Normal Univ, Coll Geog & Environm Sci, Lanzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Yangtze River Delta; Air pollution; LUR; NO2; PM2; 5; Synergistic effect; SPATIOTEMPORAL VARIATIONS; PARTICULATE MATTER; AIR-QUALITY; POLLUTION; O-3;
D O I
10.1007/s10661-023-11637-4
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Air pollution is considered one of the greatest threats to human health. This study combines a land use regression (LUR) model with satellite measurements and a distributed-lagged non-linear model (DLNM). It aims to predict high-resolution ground-level concentrations of nitrogen dioxide (NO2) and particulate matter 2.5 (PM2.5) in the Yangtze River Delta (YRD) and reveal the mechanisms of influence between NO2 and PM2.5 and precursors and meteorological factors. Results showed that the annual average NO2 and PM2.5 in the YRD urban agglomeration 2019 were 39.5 & mu;g/m(3) and 37.5 & mu;g/m(3), respectively. The seasonal variation of NO2 and PM2.5 showed winter > spring > autumn > summer. There is a compelling and complex relationship between NO2 and PM2.5. Predictors indicate that latitude (Y), surface pressure (P), ozone (O-3), carbon monoxide (CO), aerosol optical depth (AOD), residential, and rangeland have positive impacts on NO2 and PM2.5. In contrast, temperature (T), precipitation (PRE), and industrial trees hurt NO2 and PM2.5. DLNM model results show that NO2 and PM2.5 had significant associations with the included precursors and meteorological elements, with lagged and non-linear effects observed. Satellite data could help significantly increase the accuracy of LUR models; the R-2 of tenfold cross-validation was enhanced by 0.18-0.22. In 2019, PM2.5 will be the dominant pollutant in the YRD, and NO2 showed a high value in the central and eastern parts of the YRD. High concentrations of NO2 and PM2.5 are present in 86% of the YRD, meaning that residents will have difficulty avoiding exposure to these two high pollution levels.
引用
收藏
页数:17
相关论文
共 33 条
[1]   Evaluation of TROPOMI and OMI Tropospheric NO2 Products Using Measurements from MAX-DOAS and State-Controlled Stations in the Jiangsu Province of China [J].
Cai, Kun ;
Li, Shenshen ;
Lai, Jibao ;
Xia, Yu ;
Wang, Yapeng ;
Hu, Xuefei ;
Li, Ang .
ATMOSPHERE, 2022, 13 (06)
[2]   Combined use of land use regression and BenMAP for estimating public health benefits of reducing PM2.5 in Tianjin, China [J].
Chen, Li ;
Shi, Mengshuang ;
Li, Suhuan ;
Bai, Zhipeng ;
Wang, Zhongliang .
ATMOSPHERIC ENVIRONMENT, 2017, 152 :16-23
[3]   Associations Between Ambient Nitrogen Dioxide and Daily Cause-specific Mortality Evidence from 272 Chinese Cities [J].
Chen, Renjie ;
Yin, Peng ;
Meng, Xia ;
Wang, Lijun ;
Liu, Cong ;
Niu, Yue ;
Lin, Zhijing ;
Liu, Yunning ;
Liu, Jiangmei ;
Qi, Jinlei ;
You, Jinling ;
Kan, Haidong ;
Zhou, Maigeng .
EPIDEMIOLOGY, 2018, 29 (04) :482-489
[4]   Air pollution effects of industrial transformation in the Yangtze River Delta from the perspective of spatial spillover [J].
Chen, Yufan ;
Xu, Yong ;
Wang, Fuyuan .
JOURNAL OF GEOGRAPHICAL SCIENCES, 2022, 32 (01) :156-176
[5]   Variation of NO2 and NOx concentrations between and within 36 European study areas: Results from the ESCAPE study [J].
Cyrys, Josef ;
Eeftens, Marloes ;
Heinrich, Joachim ;
Ampe, Christophe ;
Armengaud, Alexandre ;
Beelen, Rob ;
Bellander, Tom ;
Beregszaszi, Timea ;
Birk, Matthias ;
Cesaroni, Giulia ;
Cirach, Marta ;
de Hoogh, Kees ;
De Nazelle, Audrey ;
de Vocht, Frank ;
Declercq, Christophe ;
Dedele, Audrius ;
Dimakopoulou, Konstantina ;
Eriksen, Kirsten ;
Galassir, Claudia ;
Grauleviciene, Regina ;
Grivas, Georgios ;
Gruzieva, Olena ;
Gustafsson, Annika Hagenbjork ;
Hoffmann, Barbara ;
Iakovides, Minas ;
Ineichen, Alex ;
Kramer, Ursula ;
Lanki, Timo ;
Lozano, Patricia ;
Madsen, Christian ;
Meliefste, Kees ;
Modig, Lars ;
Moelter, Anna ;
Mosler, Gioia ;
Nieuwenhuijsen, Mark ;
Nonnemacher, Michael ;
Oldenwening, Marieke ;
Peters, Annette ;
Pontet, Sabrina ;
Probst-Hensch, Nicole ;
Quass, Ulrich ;
Raaschou-Nielsen, Ole ;
Ranzi, Andrea ;
Sugiri, Dorothee ;
Stephanou, Euripides G. ;
Taimisto, Pekka ;
Tsai, Ming-Yi ;
Vaskovi, Eva ;
Villani, Simona ;
Wang, Meng .
ATMOSPHERIC ENVIRONMENT, 2012, 62 :374-390
[6]   Seasonal variations of particle number concentration and its relationship with PM2.5 mass concentration in industrial-residential airshed [J].
Dahari, Nadhira ;
Muda, Khalida ;
Latif, Mohd Talib ;
Dominick, Doreena ;
Hussein, Norelyza ;
Khan, Md Firoz .
ENVIRONMENTAL GEOCHEMISTRY AND HEALTH, 2022, 44 (10) :3377-3393
[7]   Evaluation of NO2 column variations over the atmosphere of Kazakhstan using satellite data [J].
Darynova, Zhuldyz ;
Maksot, Aigerim ;
Kulmukanova, Lyazzat ;
Malekipirbazari, Milad ;
Sharifi, Hamed ;
Torkmahalleh, Mehdi Amouei ;
Holloway, Tracey .
JOURNAL OF APPLIED REMOTE SENSING, 2018, 12 (04)
[8]  
Deng T., 2012, S18 ATMOSPHERIC PHYS, V235
[9]   A national-scale review of air pollutant concentrations measured in the US near-road monitoring network during 2014 and 2015 [J].
DeWinter, Jennifer L. ;
Brown, Steven G. ;
Seagram, Annie F. ;
Landsberg, Karin ;
Eisinger, Douglas S. .
ATMOSPHERIC ENVIRONMENT, 2018, 183 :94-105
[10]   Influencing factors of PM2.5 and O3 from 2016 to 2020 based on DLNM and WRF-CMAQ [J].
Duan, Wenjiao ;
Wang, Xiaoqi ;
Cheng, Shuiyuan ;
Wang, Ruipeng ;
Zhu, Jiaxian .
ENVIRONMENTAL POLLUTION, 2021, 285