Machine-Learning-Based Tool to Predict Target Prostate Biopsy Outcomes: An Internal Validation Study

被引:4
作者
Checcucci, Enrico [1 ]
Rosati, Samanta [2 ]
De Cillis, Sabrina [3 ]
Giordano, Noemi [2 ]
Volpi, Gabriele [1 ]
Granato, Stefano [3 ]
Zamengo, Davide [3 ]
Verri, Paolo [3 ]
Amparore, Daniele [3 ]
De Luca, Stefano [3 ]
Manfredi, Matteo [3 ]
Fiori, Cristian [3 ]
Di Dio, Michele [4 ]
Balestra, Gabriella [2 ]
Porpiglia, Francesco [3 ]
机构
[1] FPO IRCCS, Candiolo Canc Inst, Dept Surg, I-10060 Turin, Italy
[2] Politecn Torino, Dept Elect & Telecommun, I-10129 Turin, Italy
[3] Univ Turin, San Luigi Gonzaga Hosp, Dept Oncol, Div Urol, I-10043 Turin, Italy
[4] Annunziata Hosp, Dept Surg, Div Urol, I-87100 Cosenza, Italy
关键词
prostate cancer; artificial intelligence; prostate biopsy; machine learning; NEURAL-NETWORKS; RECOMMENDATIONS; UROLOGY; CURVE;
D O I
10.3390/jcm12134358
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The aim of this study is to present a personalized predictive model (PPM) with a machine learning (ML) system that is able to identify and classify patients with suspected prostate cancer (PCa) following mpMRI. We extracted all the patients who underwent fusion biopsy (FB) from March 2014 to December 2019, while patients from August 2020 to April 2021 were included as a validation set. The proposed system was based on the following four ML methods: a fuzzy inference system (FIS), the support vector machine (SVM), k-nearest neighbors (KNN), and self-organizing maps (SOMs). Then, a system based on fuzzy logic (FL) + SVM was compared with logistic regression (LR) and standard diagnostic tools. A total of 1448 patients were included in the training set, while 181 patients were included in the validation set. The area under the curve (AUC) of the proposed FIS + SVM model was comparable with the LR model but outperformed the other diagnostic tools. The FIS + SVM model demonstrated the best performance, in terms of negative predictive value (NPV), on the training set (78.5%); moreover, it outperformed the LR in terms of specificity (92.1% vs. 83%). Considering the validation set, our model outperformed the other methods in terms of NPV (60.7%), sensitivity (90.8%), and accuracy (69.1%). In conclusion, we successfully developed and validated a PPM tool using the FIS + SVM model to calculate the probability of PCa prior to a prostate FB, avoiding useless ones in 15% of the cases.
引用
收藏
页数:11
相关论文
共 30 条
[1]   Synopsis of the PI-RADS v2 Guidelines for Multiparametric Prostate Magnetic Resonance Imaging and Recommendations for Use [J].
Barentsz, Jelle O. ;
Weinreb, Jeffrey C. ;
Verma, Sadhna ;
Thoeny, Harriet C. ;
Tempany, Clare M. ;
Shtern, Faina ;
Padhani, Anwar R. ;
Margolis, Daniel ;
Macura, Katarzyna J. ;
Haider, Masoom A. ;
Cornud, Francois ;
Choyke, Peter L. .
EUROPEAN UROLOGY, 2016, 69 (01) :41-49
[2]   Building artificial intelligence-based personalized predictive models [J].
Bhandari, Mahendra ;
Reddiboina, Madhu .
BJU INTERNATIONAL, 2019, 124 (02) :189-191
[3]   Beyond the Learning Curve of Prostate MRI/TRUS Target Fusion Biopsy after More than 1000 Procedures [J].
Checcucci, Enrico ;
Piramide, Federico ;
Amparore, Daniele ;
De Cillis, Sabrina ;
Granato, Stefano ;
Sica, Michele ;
Verri, Paolo ;
Volpi, Gabriele ;
Piana, Alberto ;
Garrou, Diletta ;
Manfredi, Matteo ;
Fiori, Cristian ;
Porpiglia, Francesco .
UROLOGY, 2021, 155 :39-45
[4]   Artificial intelligence for target prostate biopsy outcomes prediction the potential application of fuzzy logic [J].
Checcucci, Enrico ;
Rosati, Samanta ;
De Cillis, Sabrina ;
Vagni, Marica ;
Giordano, Noemi ;
Piana, Alberto ;
Granato, Stefano ;
Amparore, Daniele ;
De Luca, Stefano ;
Fiori, Cristian ;
Balestra, Gabriella ;
Porpiglia, Francesco .
PROSTATE CANCER AND PROSTATIC DISEASES, 2022, 25 (02) :359-362
[5]   Applications of neural networks in urology: a systematic review [J].
Checcucci, Enrico ;
De Cillis, Sabrina ;
Granato, Stefano ;
Chang, Peter ;
Afyouni, Andrew Shea ;
Okhunov, Zhamshid .
CURRENT OPINION IN UROLOGY, 2020, 30 (06) :788-807
[6]   Artificial intelligence and neural networks in urology: current clinical applications [J].
Checcucci, Enrico ;
Autorino, Riccardo ;
Cacciamani, Giovanni E. ;
Amparore, Daniele ;
De Cillis, Sabrina ;
Piana, Alberto ;
Piazzolla, Pietro ;
Vezzetti, Enrico ;
Fiori, Cristian ;
Veneziano, Domenico ;
Tewari, Ash ;
Dasgupta, Prokar ;
Hung, Andrew ;
Gill, Inderbir ;
Porpiglia, Francesco .
MINERVA UROLOGICA E NEFROLOGICA, 2020, 72 (01) :49-57
[7]   Precision prostate cancer surgery: an overview of new technologies and techniques [J].
Checcucci, Enrico ;
Amparore, Daniele ;
De Luca, Stefano ;
Autorino, Riccardo ;
Fiori, Cristian ;
Porpiglia, Francesco .
MINERVA UROLOGICA E NEFROLOGICA, 2019, 71 (05) :487-501
[8]   Enhancement of prostate cancer diagnosis by machine learning techniques: an algorithm development and validation study [J].
Chiu, Peter Ka-Fung ;
Shen, Xiao ;
Wang, Guanjin ;
Ho, Cho-Lik ;
Leung, Chi-Ho ;
Ng, Chi-Fai ;
Choi, Kup-Sze ;
Teoh, Jeremy Yuen-Chun .
PROSTATE CANCER AND PROSTATIC DISEASES, 2022, 25 (04) :672-676
[9]   Avoiding Unnecessary Biopsy: MRI-based Risk Models versus a PI-RADS and PSA Density Strategy for Clinically Significant Prostate Cancer [J].
Deniffel, Dominik ;
Healy, Gerard M. ;
Dong, Xin ;
Ghai, Sangeet ;
Salinas-Miranda, Emmanuel ;
Fleshner, Neil ;
Hamilton, Robert ;
Kulkarni, Girish ;
Toi, Ants ;
van der Kwast, Theodorus ;
Zlotta, Alexandre ;
Finelli, Antonio ;
Perlis, Nathan ;
Haider, Masoom A. .
RADIOLOGY, 2021, 300 (02) :369-379
[10]  
Gorgulu O., 2016, Studies on Ethno-Medicine, V10, P393