Hopf bifurcations by perturbing a class of reversible quadratic systems

被引:2
作者
Zhang, Huihui [1 ]
Xiong, Yanqin [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Peoples R China
关键词
Hopf bifurcation; Reversible system; Melnikov function; ABELIAN-INTEGRALS; LIMIT-CYCLES; PERIODIC-ORBITS; ALMOST-ALL; GENUS ONE; CENTERS; NUMBER; PERTURBATIONS; ZEROS;
D O I
10.1016/j.chaos.2023.113309
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper first investigates the dynamical behavior of a class of reversible quadratic systems, providing all possible phase portraits on the plane. Then, we use generalized Melnikov function method to study the Hopf bifurcation of reversible quadratic systems under the perturbation of piecewise quadratic systems, finding 4 more limit cycles than the smooth case.
引用
收藏
页数:7
相关论文
共 26 条
[1]   Averaging methods for finding periodic orbits via Brouwer degree [J].
Buica, A ;
Llibre, J .
BULLETIN DES SCIENCES MATHEMATIQUES, 2004, 128 (01) :7-22
[2]   Bifurcation of Limit Cycles by Perturbing a Piecewise Linear Hamiltonian System [J].
Chen, Jiangbin ;
Han, Maoan .
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2022, 21 (02)
[3]   New lower bound for the Hilbert number in piecewise quadratic differential systems [J].
da Cruz, Leonardo P. C. ;
Novaes, Douglas D. ;
Torregrosa, Joan .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (07) :4170-4203
[4]   PERTURBATIONS OF QUADRATIC CENTERS OF GENUS ONE [J].
Gautier, Sebastien ;
Gavrilov, Lubomir ;
Iliev, Iliya D. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 25 (02) :511-535
[5]  
Han M., 2013, Bifurcation Theory of Limit Cycles
[6]  
Han M., 2021, J NONLINEAR MODEL AN, V3, P13, DOI DOI 10.12150/JNMA.2021.13
[7]   ON THE MAXIMUM NUMBER OF PERIODIC SOLUTIONS OF PIECEWISE SMOOTH PERIODIC EQUATIONS BY AVERAGE METHOD [J].
Han, Maoan .
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2017, 7 (02) :788-794
[8]  
Han MA, 2015, J APPL ANAL COMPUT, V5, P809
[9]  
Hilbert D., 1902, B AM MATH SOC, V8, P437, DOI DOI 10.1090/S0002-9904-1902-00923-3
[10]   UPPER BOUNDS FOR THE ASSOCIATED NUMBER OF ZEROS OF ABELIAN INTEGRALS FOR TWO CLASSES OF QUADRATIC REVERSIBLE CENTERS OF GENUS ONE [J].
Hong, Xiaochun ;
Lu, Junliang ;
Wang, Yanjie .
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2018, 8 (06) :1959-1970