An intelligent box office predictor based on aspect-level sentiment analysis of movie review

被引:4
|
作者
Yang, Gelan [1 ]
Xu, Yiyi [2 ]
Tu, Li [3 ]
机构
[1] Hunan City Univ, Dept Comp, Yiyang, Peoples R China
[2] Guangxi Univ Sci & Technol, Sch Comp Sci & Technol, Liuzhou 545006, Peoples R China
[3] Univ Elect Sci & Technol China, Zhongshan Inst, Coll Mech Elect Engn, Zhongshan 528400, Peoples R China
关键词
Box office prediction; Sentiment analysis; Co-attention network; Word embedding; SDC; MODEL;
D O I
10.1007/s11276-023-03378-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Box office is a challenging and crucial task for the movie distributors in decision making. In recent years, movie reviews are widely posted and shared on intelligent multimedia systems and everywhere. In this work, we employ both the metadata of the movie and the sentiment information of the users' reviews to establish an intelligent predicting model. In the sentiment polarity classification model, a co-attention network-based aspect-level sentiment analysis strategy is developed by using the specific word embedding representations from both the contexts and the aspect. Considering the movie success prediction, a Softmax Discriminant Classifier is used due to its capable of dealing with non-linear issues. The sentiments from review texts, together with the movie information are taken as input variables of the predictor. Experimental outcomes verify the working performance of the proposed method which indicates that our model can be further applied to the sentiment analysis and the predicting of movie success.
引用
收藏
页码:3039 / 3049
页数:11
相关论文
共 50 条
  • [1] An intelligent box office predictor based on aspect-level sentiment analysis of movie review
    Gelan Yang
    Yiyi Xu
    Li Tu
    Wireless Networks, 2023, 29 : 3039 - 3049
  • [2] Sentiment Analysis of Movie Reviews A new Feature-based Heuristic for Aspect-level Sentiment Classification
    Singh, V. K.
    Piryani, R.
    Uddin, A.
    Waila, P.
    2013 IEEE INTERNATIONAL MULTI CONFERENCE ON AUTOMATION, COMPUTING, COMMUNICATION, CONTROL AND COMPRESSED SENSING (IMAC4S), 2013, : 712 - 717
  • [3] Aspect-Level Sentiment Analysis Based on Deep Learning
    Zhang, Mengqi
    Chai, Jiazhao
    Cao, Jianxiang
    Ji, Jialing
    Yi, Tong
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 78 (03): : 3743 - 3762
  • [4] Survey on Aspect-Level Sentiment Analysis
    Schouten, Kim
    Frasincar, Flavius
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2016, 28 (03) : 813 - 830
  • [5] Target-Based Attention Model for Aspect-Level Sentiment Analysis
    Chen, Wei
    Yu, Wenxin
    Zhang, Zhiqiang
    Zhang, Yunye
    Xu, Kepeng
    Zhang, Fengwei
    Fan, Yibo
    He, Gang
    Yang, Zhuo
    NEURAL INFORMATION PROCESSING (ICONIP 2019), PT III, 2019, 11955 : 259 - 269
  • [6] Aspect-Level Sentiment Analysis Based on Bidirectional-GRU in SIoT
    Ali, Waqar
    Yang, Yuwang
    Qiu, Xiulin
    Ke, Yaqi
    Wang, Yinyin
    IEEE ACCESS, 2021, 9 : 69938 - 69950
  • [7] An aspect-level sentiment analysis dataset for therapies on Twitter
    Guo, Yuting
    Das, Sudeshna
    Lakamana, Sahithi
    Sarker, Abeed
    DATA IN BRIEF, 2023, 50
  • [8] Modeling Category Semantic and Sentiment Knowledge for Aspect-Level Sentiment Analysis
    Wang, Yuan
    Huo, Peng
    Tang, Lingyan
    Xiong, Ning
    Hu, Mengting
    Yu, Qi
    Yang, Jucheng
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2024, 15 (04) : 1962 - 1969
  • [9] Aspect-level sentiment analysis using context and aspect memory network
    Lv, Yanxia
    Wei, Fangna
    Cao, Lihong
    Peng, Sancheng
    Niu, Jianwei
    Yu, Shui
    Wang, Cuirong
    NEUROCOMPUTING, 2021, 428 : 195 - 205
  • [10] Exploring Weakly Supervised Latent Sentiment Explanations for Aspect-level Review Analysis
    Fang, Lei
    Huang, Minlie
    Zhu, Xiaoyan
    PROCEEDINGS OF THE 22ND ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM'13), 2013, : 1057 - 1066