Gradient estimates for non-uniformly elliptic problems with BMO nonlinearity

被引:0
作者
Byun, Sun-Sig [1 ,2 ]
Lee, Ho -Sik [3 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
[2] Seoul Natl Univ, Res Inst Math, Seoul 08826, South Korea
[3] Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
关键词
Double phase problem; Calderon-Zygmund estimate; BMO space; Extrapolation; DOUBLE-PHASE PROBLEMS; DIVERGENCE FORM; EQUATIONS; REGULARITY; FUNCTIONALS; COEFFICIENTS; MINIMIZERS; DEGENERATE; CALCULUS;
D O I
10.1016/j.jmaa.2022.126894
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide a new approach to obtain Calderon-Zygmund type estimates for non-uniformly elliptic equations with discontinuous nonlinearities of double phase growth. This approach, which is based on a small higher integrability result for the gradient of weak solutions to the associated homogeneous problems together with extrapolation from Muckenhoupt weights, enables us to find a proper comparison estimate of approximation by imposing merely a small BMO assumption on the nonlinearity with respect to the x-variable. As a consequence, we are able to prove an optimal regularity theory for a larger class of double phase problems with discontinuous nonlinearities in the literature.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:24
相关论文
共 60 条
[1]   Gradient estimates for a class of parabolic systems [J].
Acerbi, Emilio ;
Mingione, Giuseppe .
DUKE MATHEMATICAL JOURNAL, 2007, 136 (02) :285-320
[2]   An end-point global gradient weighted estimate for quasilinear equations in non-smooth domains [J].
Adimurthi, Karthik ;
Nguyen Cong Phuc .
MANUSCRIPTA MATHEMATICA, 2016, 150 (1-2) :111-135
[3]   Gradient estimates for multi-phase problems [J].
Baasandorj, Sumiya ;
Byun, Sun-Sig ;
Oh, Jehan .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (03)
[4]   ELLIPTIC EQUATIONS WITH DEGENERATE WEIGHTS [J].
Balci, Anna K. H. ;
Diening, Lars ;
Giova, Raffaella ;
di Napoli, Antonia Passarelli .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2022, 54 (02) :2373-2412
[5]   Higher order Calderon-Zygmund estimates for the p-Laplace equation [J].
Balci, Anna Kh ;
Diening, Lars ;
Weimar, Markus .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (02) :590-635
[6]   NON-AUTONOMOUS FUNCTIONALS, BORDERLINE CASES AND RELATED FUNCTION CLASSES [J].
Baroni, P. ;
Colombo, M. ;
Mingione, G. .
ST PETERSBURG MATHEMATICAL JOURNAL, 2016, 27 (03) :347-379
[7]   Regularity for general functionals with double phase [J].
Baroni, Paolo ;
Colombo, Maria ;
Mingione, Giuseppe .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (02)
[8]   Lipschitz Bounds and Nonuniform Ellipticity [J].
Beck, Lisa ;
Mingione, Giuseppe .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2020, 73 (05) :944-1034
[9]   Elliptic equations with BMO coefficients in Reifenberg domains [J].
Byun, SS ;
Wang, LH .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (10) :1283-1310
[10]   Nonlinear elliptic equations with BMO coefficients in Reifenberg domains [J].
Byun, Sun-Sig ;
Wang, Lihe ;
Zhou, Shulin .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 250 (01) :167-196