Transfer Learning for Image-Based Malware Detection for IoT

被引:10
作者
Panda, Pratyush [1 ]
Om Kumar, C. U. [1 ]
Marappan, Suguna [1 ]
Ma, Suresh [2 ]
Manimurugan, S. [3 ]
Nandi, Deeksha Veesani [4 ]
机构
[1] Vellore Inst Technol, Sch Comp Sci & Engn, Chennai 600127, India
[2] Amrita Vishwa Vidyapeetham, Amrita Sch Business, Coimbatore 641112, India
[3] Univ Tabuk, Fac Comp & Informat Technol, Tabuk 71491, Saudi Arabia
[4] Virtusa Consulting Serv, Tech Lead, Chennai 603103, India
关键词
malware detection; CNN; transfer learning; ensemble; autoencoder; GRU; MLP; MalImg;
D O I
10.3390/s23063253
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The tremendous growth in online activity and the Internet of Things (IoT) led to an increase in cyberattacks. Malware infiltrated at least one device in almost every household. Various malware detection methods that use shallow or deep IoT techniques were discovered in recent years. Deep learning models with a visualization method are the most commonly and popularly used strategy in most works. This method has the benefit of automatically extracting features, requiring less technical expertise, and using fewer resources during data processing. Training deep learning models that generalize effectively without overfitting is not feasible or appropriate with large datasets and complex architectures. In this paper, a novel ensemble model, Stacked Ensemble-autoencoder, GRU, and MLP or SE-AGM, composed of three light-weight neural network models-autoencoder, GRU, and MLP-that is trained on the 25 essential and encoded extracted features of the benchmark MalImg dataset for classification was proposed. The GRU model was tested for its suitability in malware detection due to its lesser usage in this domain. The proposed model used a concise set of malware features for training and classifying the malware classes, which reduced the time and resource consumption in comparison to other existing models. The novelty lies in the stacked ensemble method where the output of one intermediate model works as input for the next model, thereby refining the features as compared to the general notion of an ensemble approach. Inspiration was drawn from earlier image-based malware detection works and transfer learning ideas. To extract features from the MalImg dataset, a CNN-based transfer learning model that was trained from scratch on domain data was used. Data augmentation was an important step in the image processing stage to investigate its effect on classifying grayscale malware images in the MalImg dataset. SE-AGM outperformed existing approaches on the benchmark MalImg dataset with an average accuracy of 99.43%, demonstrating that our method was on par with or even surpassed them.
引用
收藏
页数:30
相关论文
共 75 条
[41]   Data augmentation and transfer learning to classify malware images in a deep learning context [J].
Marastoni, Niccolo ;
Giacobazzi, Roberto ;
Dalla Preda, Mila .
JOURNAL OF COMPUTER VIROLOGY AND HACKING TECHNIQUES, 2021, 17 (04) :279-297
[42]  
Marastoni N, 2018, PROCEEDINGS OF THE 1ST INTERNATIONAL WORKSHOP ON MACHINE LEARNING AND SOFTWARE ENGINEERING IN SYMBIOSIS, MASES 2018, P26, DOI 10.1145/3243127.3243131
[43]  
Marulli F, 2019, PROCEEDINGS OF THE 2019 SUMMER SIMULATION CONFERENCE (SUMMERSIM '19)
[44]   Ransomware Steals Your Phone. Formal Methods Rescue It [J].
Mercaldo, Francesco ;
Nardone, Vittoria ;
Santone, Antonella ;
Visaggio, Corrado Aaron .
FORMAL TECHNIQUES FOR DISTRIBUTED OBJECTS, COMPONENTS, AND SYSTEMS (FORTE 2016), 2016, 9688 :212-221
[45]   Malware detection in industrial internet of things based on hybrid image visualization and deep learning model [J].
Naeem, Hamad ;
Ullah, Farhan ;
Naeem, Muhammad Rashid ;
Khalid, Shehzad ;
Vasan, Danish ;
Jabbar, Sohail ;
Saeed, Saqib .
AD HOC NETWORKS, 2020, 105
[46]  
Nataraj L., 2011, P 8 INT S VIS CYB SE, P4, DOI DOI 10.1145/2016904.2016908
[47]  
Om Kumar C. U., 2022, Emerging Research in Computing, Information, Communication and Applications: ERCICA 2020. Lecture Notes in Electrical Engineering (789), P367, DOI 10.1007/978-981-16-1338-8_32
[48]  
Pant D., 2022, P 3 INT C ADV INF SC, P1, DOI DOI 10.1145/3503047.3503081
[49]   S-DCNN: stacked deep convolutional neural networks for malware classification [J].
Parihar, Anil Singh ;
Kumar, Shashank ;
Khosla, Savya .
MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (21) :30997-31015
[50]  
Perez L, 2017, Arxiv, DOI arXiv:1712.04621