Machine Learning Approaches in Diagnosis, Prognosis and Treatment Selection of Cardiac Amyloidosis

被引:9
作者
Allegra, Alessandro [1 ]
Mirabile, Giuseppe [1 ]
Tonacci, Alessandro [2 ]
Genovese, Sara [3 ]
Pioggia, Giovanni [3 ]
Gangemi, Sebastiano [4 ]
机构
[1] Univ Messina, Dept Human Pathol Adulthood & Childhood Gaetano Ba, Div Hematol, I-98125 Messina, Italy
[2] CNR, Clin Physiol Inst, Natl Res Council Italy IFC, I-56124 Pisa, Italy
[3] Natl Res Council Italy CNR, Inst Biomed Res & Innovat IRIB, I-98164 Messina, Italy
[4] Univ Messina, Dept Clin & Expt Med, Allergy & Clin Immunol Unit, I-98125 Messina, Italy
关键词
cardiac amyloidosis; artificial intelligence; machine learning; deep learning; ATTRwt amyloidosis; AL amyloidosis; hypertrophic cardiomyopathy; multiple myeloma; diagnosis; CARDIOVASCULAR MAGNETIC-RESONANCE; PRIMARY SYSTEMIC AMYLOIDOSIS; HYPERTROPHIC CARDIOMYOPATHY; AL AMYLOIDOSIS; HEART-FAILURE; MASS-SPECTROMETRY; PROTEIN; AGGREGATION; ECHOCARDIOGRAPHY; PREDICTION;
D O I
10.3390/ijms24065680
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cardiac amyloidosis is an uncommon restrictive cardiomyopathy featuring an unregulated amyloid protein deposition that impairs organic function. Early cardiac amyloidosis diagnosis is generally delayed by indistinguishable clinical findings of more frequent hypertrophic diseases. Furthermore, amyloidosis is divided into various groups, according to a generally accepted taxonomy, based on the proteins that make up the amyloid deposits; a careful differentiation between the various forms of amyloidosis is necessary to undertake an adequate therapeutic treatment. Thus, cardiac amyloidosis is thought to be underdiagnosed, which delays necessary therapeutic procedures, diminishing quality of life and impairing clinical prognosis. The diagnostic work-up for cardiac amyloidosis begins with the identification of clinical features, electrocardiographic and imaging findings suggestive or compatible with cardiac amyloidosis, and often requires the histological demonstration of amyloid deposition. One approach to overcome the difficulty of an early diagnosis is the use of automated diagnostic algorithms. Machine learning enables the automatic extraction of salient information from "raw data" without the need for pre-processing methods based on the a priori knowledge of the human operator. This review attempts to assess the various diagnostic approaches and artificial intelligence computational techniques in the detection of cardiac amyloidosis.
引用
收藏
页数:23
相关论文
共 181 条
[1]   Immunoelectron microscopy and mass spectrometry for classification of amyloid deposits [J].
Abildgaard, Niels ;
Rojek, Aleksandra M. ;
Moller, Hanne E. H. ;
Palstrom, Nicolai Bjodstrup ;
Nyvold, Charlotte Guldborg ;
Rasmussen, Lars Melholt ;
Hansen, Charlotte Toftmann ;
Beck, Hans Christian ;
Marcussen, Niels .
AMYLOID-JOURNAL OF PROTEIN FOLDING DISORDERS, 2020, 27 (01) :59-66
[2]   Prevalence of Transthyretin Amyloid Cardiomyopathy in Heart Failure With Preserved Ejection Fraction [J].
AbouEzzeddine, Omar F. ;
Davies, Daniel R. ;
Scott, Christopher G. ;
Fayyaz, Ahmed U. ;
Askew, J. Wells ;
McKie, Paul M. ;
Noseworthy, Peter A. ;
Johnson, Geoffrey B. ;
Dunlay, Shannon M. ;
Borlaug, Barry A. ;
Chareonthaitawee, Panithaya ;
Roger, Veronique L. ;
Dispenzieri, Angela ;
Grogan, Martha ;
Redfield, Margaret M. .
JAMA CARDIOLOGY, 2021, 6 (11) :1267-1274
[3]   Patisiran, an RNAi Therapeutic, for Hereditary Transthyretin Amyloidosis [J].
Adams, D. ;
Gonzalez-Duarte, A. ;
O'Riordan, W. D. ;
Yang, C. -C. ;
Ueda, M. ;
Kristen, A. V. ;
Tournev, I. ;
Schmidt, H. H. ;
Coelho, T. ;
Berk, J. L. ;
Lin, K. -P. ;
Vita, G. ;
Attarian, S. ;
Plante-Bordeneuve, V. ;
Mezei, M. M. ;
Campistol, J. M. ;
Buades, J. ;
Brannagan, T. H., III ;
Kim, B. J. ;
Oh, J. ;
Parman, Y. ;
Sekijima, Y. ;
Hawkins, P. N. ;
Solomon, S. D. ;
Polydefkis, M. ;
Dyck, P. J. ;
Gandhi, P. J. ;
Goyal, S. ;
Chen, J. ;
Strahs, A. L. ;
Nochur, S. V. ;
Sweetser, M. T. ;
Garg, P. P. ;
Vaishnaw, A. K. ;
Gollob, J. A. ;
Suhr, O. B. .
NEW ENGLAND JOURNAL OF MEDICINE, 2018, 379 (01) :11-21
[4]   Machine Learning Enables Prediction of Cardiac Amyloidosis by Routine Laboratory Parameters: A Proof-of-Concept Study [J].
Agibetov, Asan ;
Seirer, Benjamin ;
Dachs, Theresa-Marie ;
Koschutnik, Matthias ;
Dalos, Daniel ;
Rettl, Rene ;
Duca, Franz ;
Schrutka, Lore ;
Agis, Hermine ;
Kain, Renate ;
Auer-Grumbach, Michela ;
Binder, Christina ;
Mascherbauer, Julia ;
Hengstenberg, Christian ;
Samwald, Matthias ;
Dorffner, Georg ;
Bonderman, Diana .
JOURNAL OF CLINICAL MEDICINE, 2020, 9 (05)
[5]   Machine Learning and Deep Learning Applications in Multiple Myeloma Diagnosis, Prognosis, and Treatment Selection [J].
Allegra, Alessandro ;
Tonacci, Alessandro ;
Sciaccotta, Raffaele ;
Genovese, Sara ;
Musolino, Caterina ;
Pioggia, Giovanni ;
Gangemi, Sebastiano .
CANCERS, 2022, 14 (03)
[6]   Machine learning of native T1 mapping radiomics for classification of hypertrophic cardiomyopathy phenotypes [J].
Antonopoulos, Alexios S. ;
Boutsikou, Maria ;
Simantiris, Spyridon ;
Angelopoulos, Andreas ;
Lazaros, George ;
Panagiotopoulos, Ioannis ;
Oikonomou, Evangelos ;
Kanoupaki, Mikela ;
Tousoulis, Dimitris ;
Mohiaddin, Raad H. ;
Tsioufis, Konstantinos ;
Vlachopoulos, Charalambos .
SCIENTIFIC REPORTS, 2021, 11 (01)
[7]   Typical and atypical imaging features of cardiac amyloidosis [J].
Antonopoulos, Alexios S. ;
Almogheer, Batool ;
Azzu, Alessia ;
Alati, Emanuela ;
Papagkikas, Panagiotis ;
Cheong, Jun ;
Clague, Jonathan ;
Wechalekar, Kshama ;
Baksi, John ;
Alpendurada, Francisco .
HELLENIC JOURNAL OF CARDIOLOGY, 2021, 62 (04) :312-314
[8]   Myocardial signal intensity decay after gadolinium injection: a fast and effective method for the diagnosis of cardiac amyloidosis [J].
Aquaro, Giovanni Donato ;
Pugliese, Nicola Riccardo ;
Perfetto, Federico ;
Cappelli, Francesco ;
Barison, Andrea ;
Masci, Pier Giorgio ;
Passino, Claudio ;
Emdin, Michele .
INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, 2014, 30 (06) :1105-1115
[9]   Automated cardiovascular magnetic resonance image analysis with fully convolutional networks [J].
Bai, Wenjia ;
Sinclair, Matthew ;
Tarroni, Giacomo ;
Oktay, Ozan ;
Rajchl, Martin ;
Vaillant, Ghislain ;
Lee, Aaron M. ;
Aung, Nay ;
Lukaschuk, Elena ;
Sanghvi, Mihir M. ;
Zemrak, Filip ;
Fung, Kenneth ;
Paiva, Jose Miguel ;
Carapella, Valentina ;
Kim, Young Jin ;
Suzuki, Hideaki ;
Kainz, Bernhard ;
Matthews, Paul M. ;
Petersen, Steffen E. ;
Piechnik, Stefan K. ;
Neubauer, Stefan ;
Glocker, Ben ;
Rueckert, Daniel .
JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2018, 20
[10]  
Baker Kelty R, 2012, Methodist Debakey Cardiovasc J, V8, P3