Polyketones from Carbon Dioxide and Ethylene by Integrating Electrochemical and Organometallic Catalysis

被引:22
作者
Dodge, Henry M. [1 ]
Natinsky, Benjamin S. [3 ]
Jolly, Brandon J. [3 ]
Zhang, Haochuan [2 ]
Mu, Yu [2 ]
Chapp, Scott M. [1 ]
Tran, Thi, V [4 ]
Diaconescu, Paula L. [3 ]
Do, Loi H. [4 ]
Wang, Dunwei [2 ]
Liu, Chong [3 ]
Miller, Alexander J. M. [1 ]
机构
[1] Univ North Carolina Chapel Hill, Dept Chem, Chapel Hill, NC 27599 USA
[2] Boston Coll, Merkert Chem Ctr, Dept Chem, Chestnut Hill, MA 02467 USA
[3] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[4] Univ Houston, Dept Chem, Houston, TX 77004 USA
基金
美国国家科学基金会;
关键词
sustainable polymers; polyketone; CO2; reduction; catalysis; ALTERNATING COPOLYMERIZATION; CO2; REDUCTION; NONALTERNATING COPOLYMERIZATION; PALLADIUM CATALYSTS; MONOXIDE; POLYETHYLENE; EPOXIDES; ALKENES; OLEFINS; ETHENE;
D O I
10.1021/acscatal.3c00769
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The utilization of carbon dioxide in polymer synthesis is an attractive strategy for sustainable materials. Electrochemical CO2 reduction would offer a natural starting point for producing monomers, but the conditions of electrocatalysis are often drastically different from the conditions of coordination-insertion polymerization. Reported here is a strategy for coupling electrochemical and organometallic catalysts that enables polyketone synthesis from CO2 and ethylene in a single multicompartment reactor. Polyketone materials that are CO2- derived up to 50 wt % can be prepared in this way. Potentiostatic control over the CO-producing catalyst enables the controlled generation of low-pressure CO, which in conjunction with a palladium phosphine sulfonate organometallic catalyst enables copolymerization to nonalternating polyketones with the CO content tuned based on the applied current density.
引用
收藏
页码:4053 / 4059
页数:7
相关论文
共 51 条
[41]   The microstructure and melt properties of CO-ethylene copolymers with remarkably low CO content [J].
Soomro, Saeeda S. ;
Cozzula, Daniela ;
Leitner, Walter ;
Vogt, Henning ;
Mueller, Thomas E. .
POLYMER CHEMISTRY, 2014, 5 (12) :3831-3837
[42]   Advances in the Synthesis of Copolymers from Carbon Dioxide, Dienes, and Olefins Published as part of the Accounts of Chemical Research special issue "Sustainable Polymers" [J].
Tang, Shan ;
Nozaki, Kyoko .
ACCOUNTS OF CHEMICAL RESEARCH, 2022, 55 (11) :1524-1532
[43]   Accessing Divergent Main-Chain-Functionalized Polyethylenes via Copolymerization of Ethylene with a CO2/Butadiene-Derived Lactone [J].
Tang, Shan ;
Zhao, Yajun ;
Nozaki, Kyoko .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (43) :17953-17957
[44]  
Vavasori A., 2002, ENCYCL POLYM SCI, P1
[45]   Electrochemical Carbon Dioxide Reduction at Nanostructured Gold, Copper, and Alloy Materials [J].
Vickers, James W. ;
Alfonso, Dominic ;
Kauffman, Douglas R. .
ENERGY TECHNOLOGY, 2017, 5 (06) :775-795
[46]   Carbonylations of Alkenes with CO Surrogates [J].
Wu, Lipeng ;
Liu, Qiang ;
Jackstell, Ralf ;
Beller, Matthias .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (25) :6310-6320
[47]   Ring-Opening Polymerization of CO2-Based Disubstituted δ-Valerolactone toward Sustainable Functional Polyesters [J].
Yue, Sicong ;
Bai, Tianwen ;
Xu, Songyi ;
Shen, Ting ;
Ling, Jun ;
Ni, Xufeng .
ACS MACRO LETTERS, 2021, 10 (08) :1055-1060
[48]   CO2 Reduction: From Homogeneous to Heterogeneous Electrocatalysis [J].
Zhang, Sheng ;
Fan, Qun ;
Xia, Rong ;
Meyer, Thomas J. .
ACCOUNTS OF CHEMICAL RESEARCH, 2020, 53 (01) :255-264
[49]   Catalysis as an Enabling Science for Sustainable Polymers [J].
Zhang, Xiangyi ;
Fevre, Mareva ;
Jones, Gavin O. ;
Waymouth, Robert M. .
CHEMICAL REVIEWS, 2018, 118 (02) :839-885
[50]   Progress in catalyst exploration for heterogeneous CO2 reduction and utilization: a critical review [J].
Zhao, Guixia ;
Huang, Xiubing ;
Wang, Xiangxue ;
Wang, Xiangke .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (41) :21625-21649