Predicting gene knockout effects from expression data

被引:4
作者
Rosenski, Jonathan [1 ]
Shifman, Sagiv [2 ]
Kaplan, Tommy [1 ,3 ]
机构
[1] Hebrew Univ Jerusalem, Sch Comp Sci & Engn, Jerusalem, Israel
[2] Hebrew Univ Jerusalem, Inst Life Sci, Dept Genet, Jerusalem, Israel
[3] Hebrew Univ Jerusalem, Fac Med, Dept Dev Biol & Canc Res, Jerusalem, Israel
基金
以色列科学基金会;
关键词
Gene essentiality; Computational biology; Machine learning; CANCER; DEPENDENCY; INHIBITORS;
D O I
10.1186/s12920-023-01446-6
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
BackgroundThe study of gene essentiality, which measures the importance of a gene for cell division and survival, is used for the identification of cancer drug targets and understanding of tissue-specific manifestation of genetic conditions. In this work, we analyze essentiality and gene expression data from over 900 cancer lines from the DepMap project to create predictive models of gene essentiality.MethodsWe developed machine learning algorithms to identify those genes whose essentiality levels are explained by the expression of a small set of "modifier genes". To identify these gene sets, we developed an ensemble of statistical tests capturing linear and non-linear dependencies. We trained several regression models predicting the essentiality of each target gene, and used an automated model selection procedure to identify the optimal model and hyperparameters. Overall, we examined linear models, gradient boosted trees, Gaussian process regression models, and deep learning networks.ResultsWe identified nearly 3000 genes for which we accurately predict essentiality using gene expression data of a small set of modifier genes. We show that both in the number of genes we successfully make predictions for, as well as in the prediction accuracy, our model outperforms current state-of-the-art works.ConclusionsOur modeling framework avoids overfitting by identifying the small set of modifier genes, which are of clinical and genetic importance, and ignores the expression of noisy and irrelevant genes. Doing so improves the accuracy of essentiality prediction in various conditions and provides interpretable models. Overall, we present an accurate computational approach, as well as interpretable modeling of essentiality in a wide range of cellular conditions, thus contributing to a better understanding of the molecular mechanisms that govern tissue-specific effects of genetic disease and cancer.
引用
收藏
页数:13
相关论文
共 23 条
[1]   Role of duplicate genes in determining the tissue-selectivity of hereditary diseases [J].
Barshir, Ruth ;
Hekselman, Idan ;
Shemesh, Netta ;
Sharon, Moran ;
Novack, Lena ;
Yeger-Lotem, Esti .
PLOS GENETICS, 2018, 14 (05)
[2]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[3]   Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase [J].
Bryant, HE ;
Schultz, N ;
Thomas, HD ;
Parker, KM ;
Flower, D ;
Lopez, E ;
Kyle, S ;
Meuth, M ;
Curtin, NJ ;
Helleday, T .
NATURE, 2005, 434 (7035) :913-917
[4]   A human cell atlas of fetal gene expression [J].
Cao, Junyue ;
O'Day, Diana R. ;
Pliner, Hannah A. ;
Kingsley, Paul D. ;
Deng, Mei ;
Daza, Riza M. ;
Zager, Michael A. ;
Aldinger, Kimberly A. ;
Blecher-Gonen, Ronnie ;
Zhang, Fan ;
Spielmann, Malte ;
Palis, James ;
Doherty, Dan ;
Steemers, Frank J. ;
Glass, Ian A. ;
Trapnell, Cole ;
Shendure, Jay .
SCIENCE, 2020, 370 (6518) :808-+
[5]   Chronos: a cell population dynamics model of CRISPR experiments that improves inference of gene fitness effects [J].
Dempster, Joshua M. ;
Boyle, Isabella ;
Vazquez, Francisca ;
Root, David E. ;
Boehm, Jesse S. ;
Hahn, William C. ;
Tsherniak, Aviad ;
McFarland, James M. .
GENOME BIOLOGY, 2021, 22 (01)
[6]   The development of PARP inhibitors in ovarian cancer: from bench to bedside [J].
Drew, Yvette .
BRITISH JOURNAL OF CANCER, 2015, 113 :S3-S9
[7]  
Dvir E, 2022, bioRxiv, DOI [10.1101/2021.04.09.438977, 10.1101/2021.04.09.438977, DOI 10.1101/2021.04.09.438977]
[8]   Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy [J].
Farmer, H ;
McCabe, N ;
Lord, CJ ;
Tutt, ANJ ;
Johnson, DA ;
Richardson, TB ;
Santarosa, M ;
Dillon, KJ ;
Hickson, I ;
Knights, C ;
Martin, NMB ;
Jackson, SP ;
Smith, GCM ;
Ashworth, A .
NATURE, 2005, 434 (7035) :917-921
[9]   A Community Challenge for Inferring Genetic Predictors of Gene Essentialities through Analysis of a Functional Screen of Cancer Cell Lines [J].
Gonen, Mehmet ;
Weir, Barbara A. ;
Cowley, Glenn S. ;
Vazquez, Francisca ;
Guan, Yuanfang ;
Jaiswal, Alok ;
Karasuyama, Masayuki ;
Uzunangelov, Vladislav ;
Wang, Tao ;
Tsherniak, Aviad ;
Howell, Sara ;
Marbach, Daniel ;
Hoff, Bruce ;
Norman, Thea C. ;
Airola, Antti ;
Bivol, Adrian ;
Bunte, Kerstin ;
Carlin, Daniel ;
Chopra, Sahil ;
Deran, Alden ;
Ellrott, Kyle ;
Gopalacharyulu, Peddinti ;
Graim, Kiley ;
Kaski, Samuel ;
Khan, Suleiman A. ;
Newton, Yulia ;
Ng, Sam ;
Pahikkala, Tapio ;
Paull, Evan ;
Sokolov, Artem ;
Tang, Hao ;
Tang, Jing ;
Wennerberg, Krister ;
Xie, Yang ;
Zhan, Xiaowei ;
Zhu, Fan ;
Aittokallio, Tero ;
Mamitsuka, Hiroshi ;
Stuart, Joshua M. ;
Boehm, Jesse S. ;
Root, David E. ;
Xiao, Guanghua ;
Stolovitzky, Gustavo ;
Hahn, William C. ;
Margolin, Adam A. .
CELL SYSTEMS, 2017, 5 (05) :485-+
[10]   Mechanisms of tissue and cell-type specificity in heritable traits and diseases [J].
Hekselman, Idan ;
Yeger-Lotem, Esti .
NATURE REVIEWS GENETICS, 2020, 21 (03) :137-150