Predicting Childhood Obesity Based on Single and Multiple Well-Child Visit Data Using Machine Learning Classifiers

被引:4
|
作者
Mondal, Pritom Kumar [1 ]
Foysal, Kamrul H. H.
Norman, Bryan A. A.
Gittner, Lisaann S. S.
机构
[1] Texas Tech Univ, Dept Ind Mfg & Syst Engn, Lubbock, TX 79409 USA
关键词
childhood obesity; machine learning; classification; BMI; well-child visit; LONGITUDINAL DATA; GROWTH;
D O I
10.3390/s23020759
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Childhood obesity is a public health concern in the United States. Consequences of childhood obesity include metabolic disease and heart, lung, kidney, and other health-related comorbidities. Therefore, the early determination of obesity risk is needed and predicting the trend of a child's body mass index (BMI) at an early age is crucial. Early identification of obesity can lead to early prevention. Multiple methods have been tested and evaluated to assess obesity trends in children. Available growth charts help determine a child's current obesity level but do not predict future obesity risk. The present methods of predicting obesity include regression analysis and machine learning-based classifications and risk factor (threshold)-based categorizations based on specific criteria. All the present techniques, especially current machine learning-based methods, require longitudinal data and information on a large number of variables related to a child's growth (e.g., socioeconomic, family-related factors) in order to predict future obesity-risk. In this paper, we propose three different techniques for three different scenarios to predict childhood obesity based on machine learning approaches and apply them to real data. Our proposed methods predict obesity for children at five years of age using the following three data sets: (1) a single well-child visit, (2) multiple well-child visits under the age of two, and (3) multiple random well-child visits under the age of five. Our models are especially important for situations where only the current patient information is available rather than having multiple data points from regular spaced well-child visits. Our models predict obesity using basic information such as birth BMI, gestational age, BMI measures from well-child visits, and gender. Our models can predict a child's obesity category (normal, overweight, or obese) at five years of age with an accuracy of 89%, 77%, and 89%, for the three application scenarios, respectively. Therefore, our proposed models can assist healthcare professionals by acting as a decision support tool to aid in predicting childhood obesity early in order to reduce obesity-related complications, and in turn, improve healthcare.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Depression Level Classification Using Machine Learning Classifiers Based on Actigraphy Data
    Choi, Jung-Gu
    Ko, Inhwan
    Han, Sanghoon
    IEEE ACCESS, 2021, 9 : 116622 - 116646
  • [2] Predicting disease severity in multiple sclerosis using multimodal data and machine learning
    Andorra, Magi
    Freire, Ana
    Zubizarreta, Irati
    de Rosbo, Nicole Kerlero
    Bos, Steffan D.
    Rinas, Melanie
    Hogestol, Einar A.
    Benavent, Sigrid A. de Rodez
    Berge, Tone
    Brune-Ingebretse, Synne
    Ivaldi, Federico
    Cellerino, Maria
    Pardini, Matteo
    Vila, Gemma
    Pulido-Valdeolivas, Irene
    Martinez-Lapiscina, Elena H.
    Llufriu, Sara
    Saiz, Albert
    Blanco, Yolanda
    Martinez-Heras, Eloy
    Solana, Elisabeth
    Baecker-Koduah, Priscilla
    Behrens, Janina
    Kuchling, Joseph
    Asseyer, Susanna
    Scheel, Michael
    Chien, Claudia
    Zimmermann, Hanna
    Motamedi, Seyedamirhosein
    Kauer-Bonin, Josef
    Brandt, Alex
    Saez-Rodriguez, Julio
    Alexopoulos, Leonidas G.
    Paul, Friedemann
    Harbo, Hanne F.
    Shams, Hengameh
    Oksenberg, Jorge
    Uccelli, Antonio
    Baeza-Yates, Ricardo
    Villoslada, Pablo
    JOURNAL OF NEUROLOGY, 2024, 271 (03) : 1133 - 1149
  • [3] Predicting disease severity in multiple sclerosis using multimodal data and machine learning
    Magi Andorra
    Ana Freire
    Irati Zubizarreta
    Nicole Kerlero de Rosbo
    Steffan D. Bos
    Melanie Rinas
    Einar A. Høgestøl
    Sigrid A. de Rodez Benavent
    Tone Berge
    Synne Brune-Ingebretse
    Federico Ivaldi
    Maria Cellerino
    Matteo Pardini
    Gemma Vila
    Irene Pulido-Valdeolivas
    Elena H. Martinez-Lapiscina
    Sara Llufriu
    Albert Saiz
    Yolanda Blanco
    Eloy Martinez-Heras
    Elisabeth Solana
    Priscilla Bäcker-Koduah
    Janina Behrens
    Joseph Kuchling
    Susanna Asseyer
    Michael Scheel
    Claudia Chien
    Hanna Zimmermann
    Seyedamirhosein Motamedi
    Josef Kauer-Bonin
    Alex Brandt
    Julio Saez-Rodriguez
    Leonidas G. Alexopoulos
    Friedemann Paul
    Hanne F. Harbo
    Hengameh Shams
    Jorge Oksenberg
    Antonio Uccelli
    Ricardo Baeza-Yates
    Pablo Villoslada
    Journal of Neurology, 2024, 271 : 1133 - 1149
  • [4] IDENTIFICATION OF APHIDS USING MACHINE LEARNING CLASSIFIERS ON UAV-BASED MULTISPECTRAL DATA
    Guimaraes, Nathalie
    Padua, Luis
    Sousa, Joaquim J.
    Bento, Albino
    Couto, Pedro
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 3462 - 3465
  • [5] A Machine Learning-Based Classification System for Urban Built-Up Areas Using Multiple Classifiers and Data Sources
    Sun, Lang
    Tang, Lina
    Shao, Guofan
    Qiu, Quanyi
    Lan, Ting
    Shao, Jinyuan
    REMOTE SENSING, 2020, 12 (01)
  • [6] Machine learning approach in predicting water saturation using well data at "TM" Niger Delta
    Adeogun, Oluwakemi Y.
    Abdulwaheed, Mukthar O.
    Adeoti, Lukumon
    Allo, Olawale J.
    Fasakin, Olawunmi O.
    Okunowo, Oluwafemi O.
    SCIENTIFIC AFRICAN, 2025, 27
  • [7] Predicting Rutting Development Using Machine Learning Methods Based on RIOCHTrack Data
    Cheng, Chunru
    Wang, Linbing
    Zhou, Xingye
    Wang, Xudong
    APPLIED SCIENCES-BASEL, 2024, 14 (08):
  • [8] Using machine learning-based binary classifiers for predicting organizational members' user satisfaction with collaboration software
    Feng, Yituo
    Park, Jungryeol
    PEERJ COMPUTER SCIENCE, 2023, 9
  • [9] Interpretable machine learning models for predicting childhood myopia from school-based screening data
    Qi Feng
    Xin Wu
    Qianwen Liu
    Yuanyuan Xiao
    Xixing Zhang
    Yan Chen
    Scientific Reports, 15 (1)
  • [10] Using Machine Learning Approaches for Emergency Room Visit Prediction Based on Electronic Health Record Data
    Qiao, Zhi
    Sun, Ning
    Li, Xiang
    Xia, Eryu
    Zhao, Shiwan
    Qin, Yong
    BUILDING CONTINENTS OF KNOWLEDGE IN OCEANS OF DATA: THE FUTURE OF CO-CREATED EHEALTH, 2018, 247 : 111 - 115