Hierarchical Bayesian Inference of Photometric Redshifts with Stellar Population Synthesis Models

被引:14
作者
Leistedt, Boris [1 ]
Alsing, Justin [2 ]
Peiris, Hiranya [2 ,3 ]
Mortlock, Daniel [1 ,2 ,4 ]
Leja, Joel [5 ,6 ,7 ]
机构
[1] Imperial Coll London, Blackett Lab, Dept Phys, Prince Consort Rd, London SW7 2AZ, England
[2] Stockholm Univ, Oskar Klein Ctr Cosmoparticle Phys, Dept Phys, SE-10691 Stockholm, Sweden
[3] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England
[4] Imperial Coll London, Dept Math, London SW7 2AZ, England
[5] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA
[6] Penn State Univ, Inst Computat & Data Sci, University Pk, PA USA
[7] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA
基金
欧洲研究理事会; 美国国家科学基金会; 瑞典研究理事会;
关键词
GALAXY COLORS; DISTRIBUTIONS; CALIBRATION; UNCERTAINTIES; PROPAGATION; DUST; COMBINATION; EVOLUTION; SAMPLE; II;
D O I
10.3847/1538-4365/ac9d99
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a Bayesian hierarchical framework to analyze photometric galaxy survey data with stellar population synthesis (SPS) models. Our method couples robust modeling of spectral energy distributions with a population model and a noise model to characterize the statistical properties of the galaxy populations and real observations, respectively. By self-consistently inferring all model parameters, from high-level hyperparameters to SPS parameters of individual galaxies, one can separate sources of bias and uncertainty in the data. We demonstrate the strengths and flexibility of this approach by deriving accurate photometric redshifts for a sample of spectroscopically confirmed galaxies in the COSMOS field, all with 26-band photometry and spectroscopic redshifts. We achieve a performance competitive with publicly released photometric redshift catalogs based on the same data. Prior to this work, this approach was computationally intractable in practice due to the heavy computational load of SPS model calls; we overcome this challenge by the addition of neural emulators. We find that the largest photometric residuals are associated with poor calibration for emission-line luminosities and thus build a framework to mitigate these effects. This combination of physics-based modeling accelerated with machine learning paves the path toward meeting the stringent requirements on the accuracy of photometric redshift estimation imposed by upcoming cosmological surveys. The approach also has the potential to create new links between cosmology and galaxy evolution through the analysis of photometric data sets.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Bayesian photometric redshifts of blended sources
    Jones, Daniel M.
    Heavens, Alan F.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 483 (02) : 2487 - 2505
  • [2] The FENIKS Survey: Multiwavelength Photometric Catalog in the UDS Field, and Catalogs of Photometric Redshifts and Stellar Population Properties
    Zaidi, Kumail
    Marchesini, Danilo
    Papovich, Casey
    Antwi-Danso, Jacqueline
    Nonino, Mario
    Annunziatella, Marianna
    Brammer, Gabriel
    Esdaile, James
    Glazebrook, Karl
    Iyer, Kartheik
    Labbe, Ivo
    Marsan, Z. Cemile
    Muzzin, Adam
    Wake, David A.
    ASTROPHYSICAL JOURNAL, 2024, 969 (02)
  • [3] EzGal: A Flexible Interface for Stellar Population Synthesis Models
    Mancone, Conor L.
    Gonzalez, Anthony H.
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2012, 124 (916) : 606 - 615
  • [4] Hierarchical Modeling and Statistical Calibration for Photometric Redshifts
    Leistedt, Boris
    Hogg, David W.
    Wechsler, Risa H.
    DeRose, Joe
    ASTROPHYSICAL JOURNAL, 2019, 881 (01)
  • [5] Augmenting machine learning photometric redshifts with Gaussian mixture models
    Hatfield, P. W.
    Almosallam, I. A.
    Jarvis, M. J.
    Adams, N.
    Bowler, R. A. A.
    Gomes, Z.
    Roberts, S. J.
    Schreiber, C.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 498 (04) : 5498 - 5510
  • [6] HFF-DeepSpace Photometric Catalogs of the 12 Hubble Frontier Fields, Clusters, and Parallels: Photometry, Photometric Redshifts, and Stellar Masses
    Shipley, Heath V.
    Lange-Vagle, Daniel
    Marchesini, Danilo
    Brammer, Gabriel B.
    Ferrarese, Laura
    Stefanon, Mauro
    Kado-Fong, Erin
    Whitaker, Katherine E.
    Oesch, Pascal A.
    Feinstein, Adina D.
    Labbe, Ivo
    Lundgren, Britt
    Martis, Nicholas
    Muzzin, Adam
    Nedkova, Kalina
    Skelton, Rosalind
    van der Wel, Arjen
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2018, 235 (01)
  • [7] Hierarchical Bayesian inference on an analytical toy model of the LISA MBHB population
    Langen, Vivienne
    Tamanini, Nicola
    Marsat, Sylvain
    Bortolas, Elisa
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2025, 536 (04) : 3366 - 3385
  • [8] Photometric Redshifts and Stellar Masses for Galaxies from the DESI Legacy Imaging Surveys
    Zou, Hu
    Gao, Jinghua
    Zhou, Xu
    Kong, Xu
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2019, 242 (01)
  • [9] A Bayesian hierarchical model for photometric red shifts
    Hurn, Merrilee
    Green, Peter J.
    Al-Awadhi, Fahimah
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2008, 57 : 487 - 504
  • [10] On the maximum age resolution achievable through stellar population synthesis models
    Zibetti, Stefano
    Rossi, Edoardo
    Gallazzi, Anna R.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 528 (02) : 2790 - 2804