An efficient thermal interface material with anisotropy orientation and high through-plane thermal conductivity

被引:54
|
作者
Zhang, Guorui [1 ]
Xue, Sen [1 ]
Chen, Feng [1 ]
Fu, Qiang [1 ]
机构
[1] Sichuan Univ, Coll Polymer Sci & Engn, Chengdu 610065, Peoples R China
基金
中国国家自然科学基金;
关键词
Carbon fiber; Vertical alignment; Anisotropy; Through-plane thermal conductivity; Thermal interface materials; FILLED POLYMER COMPOSITES; BORON-NITRIDE; CARBON NANOTUBES; GRAPHENE; MANAGEMENT; NANOCOMPOSITES; FABRICATION; NANOSHEETS; AEROGELS;
D O I
10.1016/j.compscitech.2022.109784
中图分类号
TB33 [复合材料];
学科分类号
摘要
The rapid development of integrated circuits and electronic devices with increased power density and heat flux, requires effective heat dissipation for thermal management. Constructing a directional thermal pathway from the vertically aligned thermal conductive fillers in the thickness-direction of polymer-based thermal interface materials (TIMs) is a desirable strategy to form materials with high thermal conductivity. However, due to the complexity of vertical orientation technology, fillers with the poor orientation degree weaken the enhancement of through-plane thermal conductivity. In this work, we prepared short carbon fiber (CF)/olefin block copolymer (OBC) composites with high orientation degree via the melting extrusion method on a basis of sharing force induce alignment. Attributed to the high orientation degree of CF in the vertical direction, the as-prepared material shows a through-plane thermal conductivity (kappa(perpendicular to)) up to 15.06 W/m K at a 30 vol% CF content, which is similar to 10 times that of a parallel structure. The operating temperature difference between vertical and random reached 35.2 degrees C, surpassing the characters in most works of literature. This study provides an effective way to develop high-oriented degree and electrical insulation polymer composites with superior kappa(perpendicular to) for scalable thermal management applications in electronic devices.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Magnetic alignment of electrochemically exfoliated graphite in epoxy as a thermal interface material with high through-plane thermal conductivity
    Jeong Heon Ryu
    Seo Mi Yang
    Jea Uk Lee
    Jae Ho Kim
    Seung Jae Yang
    Carbon Letters, 2022, 32 : 1433 - 1439
  • [2] Magnetic alignment of electrochemically exfoliated graphite in epoxy as a thermal interface material with high through-plane thermal conductivity
    Ryu, Jeong Heon
    Yang, Seo Mi
    Lee, Jea Uk
    Kim, Jae Ho
    Yang, Seung Jae
    CARBON LETTERS, 2022, 32 (06) : 1433 - 1439
  • [3] Thermal Interface Materials with Both High Through-Plane Thermal Conductivity and Excellent Elastic Compliance
    Li, Junwei
    Zhang, Yuexing
    Liang, Ting
    Bai, Xue
    Pang, Yunsong
    Zeng, Xiangliang
    Hu, Qinghua
    Tu, Wendian
    Ye, Zhenqiang
    Du, Guoping
    Sun, Rong
    Zeng, Xiaoliang
    CHEMISTRY OF MATERIALS, 2021, 33 (22) : 8926 - 8937
  • [4] Scalable thermal interface materials with close-packed structure and high through-plane thermal conductivity
    Feng, Chang-Ping
    Ji, Jin-Chao
    Xu, Shao-Cun
    Hou, Lei
    Cui, Gong-Peng
    Lan, Hong-Bo
    Wei, Fang
    Yang, Jie
    Yang, Wei
    POLYMER COMPOSITES, 2025,
  • [5] Elastomeric thermal interface materials with high through-plane thermal conductivity by 3D printing
    Fan, Yong
    Wang, Yongbin
    Qiu, Jun
    JOURNAL OF APPLIED POLYMER SCIENCE, 2024, 141 (24)
  • [6] Enhanced through-plane thermal conductivity and high electrical insulation of flexible composite films with aligned boron nitride for thermal interface material
    Song, Qingsong
    Zhu, Wei
    Deng, Yuan
    Hai, Fengxun
    Wang, Yaling
    Guo, Zhanpeng
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2019, 127
  • [7] Compressible thermal interface materials with high through-plane thermal conductivity from vertically oriented carbon fibers
    Fu, Liqin
    Kong, Nizao
    Huang, Min
    Tian, Yexin
    Yan, Yuanwei
    Wen, Bingjie
    Ye, Chong
    Huang, Dong
    Han, Fei
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 987
  • [8] A Novel Thermal Interface Material Composed of Vertically Aligned Boron Nitride and Graphite Films for Ultrahigh Through-Plane Thermal Conductivity
    Bashir, Akbar
    Niu, Hongyu
    Maqbool, Muhammad
    Usman, Ali
    Lv, Ruicong
    Ashraf, Zubair
    Cheng, Ming
    Bai, Shulin
    SMALL METHODS, 2024, 8 (12)
  • [9] Through-plane assembly of carbon fibers into 3D skeleton achieving enhanced thermal conductivity of a thermal interface material
    Ma, Jiake
    Shang, Tianyu
    Ren, Linlin
    Yao, Yimin
    Zhang, Tao
    Xie, Jinqi
    Zhang, Baotan
    Zeng, Xiaoliang
    Sun, Rong
    Xu, Jian-Bin
    Wong, Ching-Ping
    CHEMICAL ENGINEERING JOURNAL, 2020, 380
  • [10] Expanded graphite/graphene composites for high through-plane thermal conductivity
    Fan, Yuyuan
    Wang, Zeyu
    Guo, Xing
    Yang, Sufang
    Jia, Hui
    Tao, Zechao
    Liu, Jinxing
    Yan, Xi
    Liu, Zhanjun
    Li, Junfen
    DIAMOND AND RELATED MATERIALS, 2024, 143