Virtual element method for the Sobolev equations

被引:5
作者
Zhang, Buying [1 ,2 ]
Zhao, Jikun [3 ]
Chen, Shaochun [3 ]
机构
[1] Hebei Normal Univ Sci & Technol, Sch Math & Informat Sci & Technol, Qinhuangdao, Hebei, Peoples R China
[2] Yanshan Univ, Sch Econ & Management, Qinhuangdao, Hebei, Peoples R China
[3] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R China
关键词
error bounds; polygonal meshes; Sobolev equations; stability and convergence; virtual element method; SUPERCONVERGENCE;
D O I
10.1002/mma.8579
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The virtual element method for the Sobolev equations is proposed in this paper, where the semi-discrete scheme and the fully discrete scheme are both discussed. With the help of the energy projection operator defined by the discrete bilinear form, the corresponding optimal error estimates in the L2$$ {L}<^>2 $$ norm and H1$$ {H}<^>1 $$ semi-norm for both the semi-discrete solution and the fully discrete solution are deduced. Finally, three numerical examples are carried out to verify the theoretical results.
引用
收藏
页码:1266 / 1281
页数:16
相关论文
共 50 条
  • [31] Adaptive Virtual Element Method for Optimal Control Problem Governed by Stokes Equations
    Yanwei Li
    Qiming Wang
    Zhaojie Zhou
    Journal of Scientific Computing, 2023, 97
  • [32] Arbitrary-order intrinsic virtual element method for elliptic equations on surfaces
    Elena Bachini
    Gianmarco Manzini
    Mario Putti
    Calcolo, 2021, 58
  • [33] Adaptive Virtual Element Method for Optimal Control Problem Governed by Stokes Equations
    Li, Yanwei
    Wang, Qiming
    Zhou, Zhaojie
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 97 (03)
  • [34] MIXED VIRTUAL ELEMENT METHOD FOR LINEAR PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS
    Suthar, Meghana
    Yadav, Sangita
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2024, 21 (04) : 504 - 527
  • [35] Mixed virtual element method for integro-differential equations of parabolic type
    Suthar, Meghana
    Yadav, Sangita
    Kumar, Sarvesh
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, 70 (04) : 2827 - 2856
  • [36] Arbitrary-order intrinsic virtual element method for elliptic equations on surfaces
    Bachini, Elena
    Manzini, Gianmarco
    Putti, Mario
    CALCOLO, 2021, 58 (03)
  • [37] Study of the stabilization parameter in the virtual element method
    Fujimoto, Ryuta
    Saiki, Isao
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 428
  • [38] MIXED VIRTUAL ELEMENT METHOD FOR LINEAR PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS
    Suthar, Meghana
    Yadav, Sangita
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2024, 21 (03) : 504 - 527
  • [39] The Hitchhiker's Guide to the Virtual Element Method
    da Veiga, L. Beirao
    Brezzi, F.
    Marini, L. D.
    Russo, A.
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2014, 24 (08) : 1541 - 1573
  • [40] The virtual element method in 50 lines of MATLAB
    Sutton, Oliver J.
    NUMERICAL ALGORITHMS, 2017, 75 (04) : 1141 - 1159