Virtual element method for the Sobolev equations

被引:5
作者
Zhang, Buying [1 ,2 ]
Zhao, Jikun [3 ]
Chen, Shaochun [3 ]
机构
[1] Hebei Normal Univ Sci & Technol, Sch Math & Informat Sci & Technol, Qinhuangdao, Hebei, Peoples R China
[2] Yanshan Univ, Sch Econ & Management, Qinhuangdao, Hebei, Peoples R China
[3] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R China
关键词
error bounds; polygonal meshes; Sobolev equations; stability and convergence; virtual element method; SUPERCONVERGENCE;
D O I
10.1002/mma.8579
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The virtual element method for the Sobolev equations is proposed in this paper, where the semi-discrete scheme and the fully discrete scheme are both discussed. With the help of the energy projection operator defined by the discrete bilinear form, the corresponding optimal error estimates in the L2$$ {L}<^>2 $$ norm and H1$$ {H}<^>1 $$ semi-norm for both the semi-discrete solution and the fully discrete solution are deduced. Finally, three numerical examples are carried out to verify the theoretical results.
引用
收藏
页码:1266 / 1281
页数:16
相关论文
共 50 条
  • [21] A mixed virtual element method for nearly incompressible linear elasticity equations
    Huoyuan Duan
    Ziliang Li
    Advances in Computational Mathematics, 2023, 49
  • [22] A Conforming Virtual Element Method for Parabolic Integro-Differential Equations
    Yadav, Sangita
    Suthar, Meghana
    Kumar, Sarvesh
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2024, 24 (04) : 1001 - 1019
  • [23] Superconvergence analysis of an H1-Galerkin mixed finite element method for Sobolev equations
    Shi, Dongyang
    Wang, Junjun
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 72 (06) : 1590 - 1602
  • [24] A mixed virtual element method for nearly incompressible linear elasticity equations
    Duan, Huoyuan
    Li, Ziliang
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2023, 49 (01)
  • [25] A Non-Consistent Virtual Element Method for Reaction Diffusion Equations
    Feng, Fang
    Huang, Jianguo
    Yu, Yue
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2020, 10 (04) : 786 - 799
  • [26] THE VIRTUAL ELEMENT METHOD WITH CURVED EDGES
    da Veiga, L. Beirao
    Russo, A.
    Vacca, G.
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2019, 53 (02): : 375 - 404
  • [27] Shape optimization with virtual element method
    Feng, Fang
    Yang, Hui
    Zhu, Shengfeng
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 131
  • [28] A virtual element method with arbitrary regularity
    da Veiga, Lourenco Beirao
    Manzini, Gianmarco
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2014, 34 (02) : 759 - 781
  • [29] A fast linearized virtual element method on graded meshes for nonlinear time-fractional diffusion equations
    Gu, Qiling
    Chen, Yanping
    Zhou, Jianwei
    Huang, Jian
    NUMERICAL ALGORITHMS, 2024, 97 (03) : 1141 - 1177
  • [30] A virtual element method for the steady-state Poisson-Nernst-Planck equations on polygonal meshes
    Liu, Yang
    Shu, Shi
    Wei, Huayi
    Yang, Ying
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 102 : 95 - 112