Virtual element method for the Sobolev equations

被引:5
|
作者
Zhang, Buying [1 ,2 ]
Zhao, Jikun [3 ]
Chen, Shaochun [3 ]
机构
[1] Hebei Normal Univ Sci & Technol, Sch Math & Informat Sci & Technol, Qinhuangdao, Hebei, Peoples R China
[2] Yanshan Univ, Sch Econ & Management, Qinhuangdao, Hebei, Peoples R China
[3] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R China
关键词
error bounds; polygonal meshes; Sobolev equations; stability and convergence; virtual element method; SUPERCONVERGENCE;
D O I
10.1002/mma.8579
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The virtual element method for the Sobolev equations is proposed in this paper, where the semi-discrete scheme and the fully discrete scheme are both discussed. With the help of the energy projection operator defined by the discrete bilinear form, the corresponding optimal error estimates in the L2$$ {L}<^>2 $$ norm and H1$$ {H}<^>1 $$ semi-norm for both the semi-discrete solution and the fully discrete solution are deduced. Finally, three numerical examples are carried out to verify the theoretical results.
引用
收藏
页码:1266 / 1281
页数:16
相关论文
共 50 条
  • [1] Linearized nonconforming virtual element method for the semilinear Sobolev equations
    Zhang, Buying
    Zhu, Wenhao
    Zhao, Jikun
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2025,
  • [2] Conforming Virtual Element Methods for Sobolev Equations
    Yang Xu
    Zhenguo Zhou
    Jingjun Zhao
    Journal of Scientific Computing, 2022, 93
  • [3] Virtual element method for nonlinear Sobolev equation on polygonal meshes
    Wanxiang Liu
    Yanping Chen
    Qiling Gu
    Yunqing Huang
    Numerical Algorithms, 2023, 94 : 1731 - 1761
  • [4] Virtual element method for nonlinear Sobolev equation on polygonal meshes
    Liu, Wanxiang
    Chen, Yanping
    Gu, Qiling
    Huang, Yunqing
    NUMERICAL ALGORITHMS, 2023, 94 (04) : 1731 - 1761
  • [5] A virtual element method for the von Karman equations
    Lovadina, Carlo
    Mora, David
    Velasquez, Ivan
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2021, 55 (02) : 533 - 560
  • [6] THE NONCONFORMING VIRTUAL ELEMENT METHOD FOR THE STOKES EQUATIONS
    Cangiani, Andrea
    Gyrya, Vitaliy
    Manzini, Gianmarco
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (06) : 3411 - 3435
  • [7] A virtual element method for stochastic Stokes equations
    Liu, Wei
    Duan, Huoyuan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (06) : 1813 - 1832
  • [8] Application of spectral element method for solving Sobolev equations with error estimation
    Dehghan, Mehdi
    Shafieeabyaneh, Nasim
    Abbaszadeh, Mostafa
    APPLIED NUMERICAL MATHEMATICS, 2020, 158 (158) : 439 - 462
  • [9] Optimal convergence analysis of the virtual element methods for second-order Sobolev equations with variable coefficients on polygonal meshes
    Pradhan, Gouranga
    Deka, Bhupen
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, 70 (03) : 2313 - 2341
  • [10] Anisotropic rectangular nonconforming finite element analysis for Sobolev equations
    石东洋
    王海红
    郭城
    AppliedMathematicsandMechanics(EnglishEdition), 2008, (09) : 1203 - 1214