An Adaptive Unscented Kalman Filter for the Estimation of the Vehicle Velocity Components, Slip Angles, and Slip Ratios in Extreme Driving Manoeuvres

被引:7
作者
Alshawi, Aymen [1 ]
De Pinto, Stefano [2 ]
Stano, Pietro [1 ]
van Aalst, Sebastiaan [3 ]
Praet, Kylian [3 ]
Boulay, Emilie [3 ]
Ivone, Davide [4 ]
Gruber, Patrick [1 ]
Sorniotti, Aldo [1 ,4 ]
机构
[1] Univ Surrey, Ctr Automot Engn, Guildford GU2 7XH, England
[2] McLaren Automot, Woking GU21 4YH, England
[3] Tenneco Automot, B-3800 St Truiden, Belgium
[4] Politecn Torino, Dept Mech & Aerosp Engn, I-10129 Turin, Italy
关键词
unscented Kalman filter; sideslip angle estimation; vehicle speed estimation; slip ratio estimation; state estimation; covariance matrix adaptation; ENSURING NUMERICAL STABILITY; REAL-TIME ESTIMATION; SIDESLIP ESTIMATOR; STATE;
D O I
10.3390/s24020436
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This paper presents a novel unscented Kalman filter (UKF) implementation with adaptive covariance matrices (ACMs), to accurately estimate the longitudinal and lateral components of vehicle velocity, and thus the sideslip angle, tire slip angles, and tire slip ratios, also in extreme driving conditions, including tyre-road friction variations. The adaptation strategies are implemented on both the process noise and measurement noise covariances. The resulting UKF ACM is compared against a well-tuned baseline UKF with fixed covariances. Experimental test results in high tyre-road friction conditions show the good performance of both filters, with only a very marginal benefit of the ACM version. However, the simulated extreme tests in variable and low-friction conditions highlight the superior performance and robustness provided by the adaptation mechanism.
引用
收藏
页数:23
相关论文
共 54 条
[1]  
[Anonymous], 2011, ISO 7401
[2]  
[Anonymous], 2006, An Introduction to the Kalman Filter
[3]   Unscented Kalman filter for vehicle state estimation [J].
Antonov, S. ;
Fehn, A. ;
Kugi, A. .
VEHICLE SYSTEM DYNAMICS, 2011, 49 (09) :1497-1520
[4]   Cornering Stiffness and Sideslip Angle Estimation for Integrated Vehicle Dynamics Control [J].
Bechtoff, Jakob ;
Koenig, Lars ;
Isermann, Rolf .
IFAC PAPERSONLINE, 2016, 49 (11) :297-304
[5]   Vehicle state estimation based on Kalman filters [J].
Bersani, M. ;
Vignati, M. ;
Mentasti, S. ;
Arrigoni, S. ;
Cheli, F. .
2019 AEIT INTERNATIONAL CONFERENCE OF ELECTRICAL AND ELECTRONIC TECHNOLOGIES FOR AUTOMOTIVE (AEIT AUTOMOTIVE), 2019,
[6]  
Bertipaglia A, 2022, Arxiv, DOI arXiv:2206.15119
[7]   A Two-Stage Bayesian Optimisation for Automatic Tuning of an Unscented Kalman Filter for Vehicle Sideslip Angle Estimation [J].
Bertipaglia, Alberto ;
Shyrokau, Barys ;
Alirezaei, Mohsen ;
Happee, Riender .
2022 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2022, :670-677
[8]   Combined regression and classification artificial neural networks for sideslip angle estimation and road condition identification [J].
Bonfitto, Angelo ;
Feraco, Stefano ;
Tonoli, Andrea ;
Amati, Nicola .
VEHICLE SYSTEM DYNAMICS, 2020, 58 (11) :1766-1787
[9]  
Burckhardt M., 1993, Fahrwerktechnik: radschlupf-regelsysteme, V36
[10]   Sideslip angle estimation using extended Kalman filter [J].
Chen, B. -C. ;
Hsieh, F-C. .
VEHICLE SYSTEM DYNAMICS, 2008, 46 :353-364