Weight enumerators of all cubic-primitive irreducible cyclic codes of odd prime power length

被引:0
作者
Bishnoi, Monika [1 ,2 ]
Kumar, Pankaj [1 ]
机构
[1] Guru Jambheshwar Univ Sci & Technol, Dept Math, Hisar 125001, Haryana, India
[2] CRM Jat Coll, Hisar 125001, Haryana, India
关键词
Cyclic code; Minimum distance; Weight enumerator; Weight distribution; DISTRIBUTIONS;
D O I
10.1016/j.ffa.2023.102334
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let p and q be odd primes and q be a cubic primitive modulo pu for some positive integer u. In this paper, we prove that the solutions of some Diophantine equations provide the weight enumerators of some cubic primitive irreducible cyclic codes of prime length. Bounds on the minimum distances of these codes are also given. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:21
相关论文
共 15 条
[1]  
Apostol T, 1976, INTRO ANAL NUMBER TH
[2]   Weight enumerators of some irreducible cyclic codes of odd length [J].
Bishnoi, Monika ;
Kumar, Pankaj .
CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2023, 15 (04) :795-809
[3]   The Weight Distribution of Some Irreducible Cyclic Codes [J].
Ding, Cunsheng .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (03) :955-960
[4]  
Huffman WC., 2010, Fundamentals of Error-Correcting Codes, DOI [10.1017/CBO9780511807077, DOI 10.1017/CBO9780511807077]
[5]   THE WEIGHT DISTRIBUTIONS OF SOME IRREDUCIBLE CYCLIC CODES OF LENGTH pn AND 2pn [J].
Kumar, Pankaj ;
Sangwan, Monika ;
Arora, Suresh Kumar .
ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2015, 9 (03) :277-289
[6]   The minimum Hamming distances of irreducible cyclic codes [J].
Li, Fengwei ;
Yue, Qin ;
Li, Chengju .
FINITE FIELDS AND THEIR APPLICATIONS, 2014, 29 :225-242
[7]  
Lidl R., 1986, INTRO FINITE FIELDS
[8]   A note on the weight distribution of some cyclic codes [J].
Lin, Liren ;
Chen, Bocong ;
Liu, Hongwei .
FINITE FIELDS AND THEIR APPLICATIONS, 2015, 35 :78-85
[9]   Weight distributions of some irreducible cyclic codes of length n [J].
Riddhi ;
Singh, Kulvir ;
Kumar, Pankaj .
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2022, 53 (04) :1073-1082
[10]   Cyclotomic numbers and primitive idempotents in the ring GF(q)[x]/(xpn-1) [J].
Sharma, A ;
Bakshi, GK ;
Dumir, VC ;
Raka, M .
FINITE FIELDS AND THEIR APPLICATIONS, 2004, 10 (04) :653-673