Weight enumerators of all cubic-primitive irreducible cyclic codes of odd prime power length

被引:0
作者
Bishnoi, Monika [1 ,2 ]
Kumar, Pankaj [1 ]
机构
[1] Guru Jambheshwar Univ Sci & Technol, Dept Math, Hisar 125001, Haryana, India
[2] CRM Jat Coll, Hisar 125001, Haryana, India
关键词
Cyclic code; Minimum distance; Weight enumerator; Weight distribution; DISTRIBUTIONS;
D O I
10.1016/j.ffa.2023.102334
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let p and q be odd primes and q be a cubic primitive modulo pu for some positive integer u. In this paper, we prove that the solutions of some Diophantine equations provide the weight enumerators of some cubic primitive irreducible cyclic codes of prime length. Bounds on the minimum distances of these codes are also given. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:21
相关论文
共 15 条
  • [1] Apostol T. M., 1976, INTRO ANAL NUMBER TH
  • [2] Weight enumerators of some irreducible cyclic codes of odd length
    Bishnoi, Monika
    Kumar, Pankaj
    [J]. CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2023, 15 (04): : 795 - 809
  • [3] The Weight Distribution of Some Irreducible Cyclic Codes
    Ding, Cunsheng
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (03) : 955 - 960
  • [4] Huffman W., 2003, FUNDAMENTALS ERROR C
  • [5] THE WEIGHT DISTRIBUTIONS OF SOME IRREDUCIBLE CYCLIC CODES OF LENGTH pn AND 2pn
    Kumar, Pankaj
    Sangwan, Monika
    Arora, Suresh Kumar
    [J]. ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2015, 9 (03) : 277 - 289
  • [6] The minimum Hamming distances of irreducible cyclic codes
    Li, Fengwei
    Yue, Qin
    Li, Chengju
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2014, 29 : 225 - 242
  • [7] Lidl R., 1986, Introduction to Finite Fields and their Applications
  • [8] A note on the weight distribution of some cyclic codes
    Lin, Liren
    Chen, Bocong
    Liu, Hongwei
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2015, 35 : 78 - 85
  • [9] Weight distributions of some irreducible cyclic codes of length n
    Riddhi
    Singh, Kulvir
    Kumar, Pankaj
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2022, 53 (04) : 1073 - 1082
  • [10] Cyclotomic numbers and primitive idempotents in the ring GF(q)[x]/(xpn-1)
    Sharma, A
    Bakshi, GK
    Dumir, VC
    Raka, M
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2004, 10 (04) : 653 - 673