Object Detection with YOLOv7 Model on Smart Mobile Devices

被引:0
作者
Karadag, Batuhan [1 ,2 ]
Ari, Ali [3 ]
机构
[1] Inonu Univ, Fen Bilimleri Enstitusu, Bilgisayar Muhendisligi Bolumu, Malatya, Turkiye
[2] Iskenderun Tekn Univ, Muhendisl & Doga Bilimleri Fak, Bilgisayar Muhendisligi Bolumu, Hatay, Turkiye
[3] Inonu Univ, Muhendisl Fak, Bilgisayar Muhendisligi Bolumu, Malatya, Turkiye
来源
JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI | 2023年 / 26卷 / 03期
关键词
YOLOv7; Object Detection; Mobile Object Detection; Mobile YOLOv7;
D O I
10.2339/politeknik.1296541
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The YOLOv7 model, which is one of the current object detection algorithms based on deep learning, achieved an average accuracy of 51.2% in the Microsoft COCO dataset, proving that it is ahead of other object detection methods. YOLO has been a preferred model for object detection problems in the commercial field since it was first introduced, due to its speed , accuracy. Generally, high-capacity hardware is needed to run deep learning-based systems. In this study, it is aimed to detect objects in smart mobile devices without using a graphic processor unit by activating the YOLOv7 model on the server in order to be able to detect objects in smart mobile devices, which have become one of the important tools of trade today. With the study, the YOLOv7 object detection algorithm has been successfully run on mobile devices with iOS operating system. In this way, an image taken on mobile devices or already in the gallery after any image is transferred to the server, it is ensured that the objects in the image are detected effectively in terms of accuracy and speed.
引用
收藏
页码:1207 / 1214
页数:10
相关论文
共 50 条
  • [1] A Trash Detection Model Based on YOLOv7
    Liang, Hu
    Xu, Chao
    He, Tao
    PROCEEDINGS OF 2024 INTERNATIONAL CONFERENCE ON COMPUTER AND MULTIMEDIA TECHNOLOGY, ICCMT 2024, 2024, : 300 - 303
  • [2] Real-time Object Detection Performance Analysis Using YOLOv7 on Edge Devices
    Santos, Ricardo C. Camara de M.
    Silva, Mateus Coelho
    Oliveira, Ricardo A. R.
    IEEE LATIN AMERICA TRANSACTIONS, 2024, 22 (10) : 799 - 805
  • [3] Underwater optical image object detection based on YOLOv7 algorithm
    Wang, Shaojie
    Wu, Weichao
    Wang, Xinyuan
    Han, Yongchen
    Ma, Yuwei
    OCEANS 2023 - LIMERICK, 2023,
  • [4] Image-Fused-Guided Underwater Object Detection Model Based on Improved YOLOv7
    Wang, Zhenhua
    Zhang, Guangshi
    Luan, Kuifeng
    Yi, Congqin
    Li, Mingjie
    ELECTRONICS, 2023, 12 (19)
  • [5] Automatic Acne Detection Model Based on Improved YOLOv7
    Zhang, Delong
    Jin, Chunyang
    Zhang, Zhidong
    Cao, Xiyuan
    Xue, Chenyang
    IEEE ACCESS, 2024, 12 : 194390 - 194398
  • [6] Enhancing Object Detection in Remote Sensing: A Hybrid YOLOv7 and Transformer Approach with Automatic Model Selection
    Ahmed, Mahmoud
    El-Sheimy, Naser
    Leung, Henry
    Moussa, Adel
    REMOTE SENSING, 2024, 16 (01)
  • [7] Lightweight Low-Light Object Detection Algorithm Based on YOLOv7
    Li Changyu
    Ge Lei
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (14)
  • [8] Overview of single-stage object detection models: from Yolov1 to Yolov7
    Yasmine, Ghazlane
    Maha, Gmira
    Hicham, Medromi
    2023 INTERNATIONAL WIRELESS COMMUNICATIONS AND MOBILE COMPUTING, IWCMC, 2023, : 1579 - 1584
  • [9] NAM-YOLOV7: An Improved YOLOv7 Based on Attention Model for Animal Death Detection
    Sirisha, Uddagiri
    Chandana, Bolem Sai
    Harikiran, Jonnadula
    TRAITEMENT DU SIGNAL, 2023, 40 (02) : 783 - 789
  • [10] Improved Architecture and Training Strategies of YOLOv7 for Remote Sensing Image Object Detection
    Zhao, Dewei
    Shao, Faming
    Liu, Qiang
    Zhang, Heng
    Zhang, Zihan
    Yang, Li
    REMOTE SENSING, 2024, 16 (17)