Variational quantum metrology for multiparameter estimation under dephasing noise

被引:6
作者
Le, Trung Kien [1 ,2 ]
Nguyen, Hung Q. [3 ]
Bin Ho, Le [4 ,5 ]
机构
[1] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[2] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
[3] Vietnam Natl Univ, Univ Sci, Nano & Energy Ctr, Hanoi 120401, Vietnam
[4] Tohoku Univ, Frontier Res Inst Interdisciplinary Sci, Sendai, Miyagi 9808578, Japan
[5] Tohoku Univ, Grad Sch Engn, Dept Appl Phys, Sendai, Miyagi 9808579, Japan
关键词
D O I
10.1038/s41598-023-44786-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present a hybrid quantum-classical variational scheme to enhance precision in quantum metrology. In the scheme, both the initial state and the measurement basis in the quantum part are parameterized and optimized via the classical part. It enables the maximization of information gained about the measured quantity. We discuss specific applications to 3D magnetic field sensing under several dephasing noise models. Indeed, we demonstrate its ability to simultaneously estimate all parameters and surpass the standard quantum limit, making it a powerful tool for metrological applications.
引用
收藏
页数:10
相关论文
共 75 条
  • [1] Probe Incompatibility in Multiparameter Noisy Quantum Metrology
    Albarelli, Francesco
    Demkowicz-Dobrzanski, Rafal
    [J]. PHYSICAL REVIEW X, 2022, 12 (01)
  • [2] Evaluating the Holevo Cramer-Rao Bound for Multiparameter Quantum Metrology
    Albarelli, Francesco
    Friel, Jamie F.
    Datta, Animesh
    [J]. PHYSICAL REVIEW LETTERS, 2019, 123 (20)
  • [3] Quantum Metrology for Non-Markovian Processes
    Altherr, Anian
    Yang, Yuxiang
    [J]. PHYSICAL REVIEW LETTERS, 2021, 127 (06)
  • [4] Fisher information in quantum statistics
    Barndorff-Nielsen, OE
    Gill, RD
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (24): : 4481 - 4490
  • [5] Quantum Enhanced Estimation of a Multidimensional Field
    Baumgratz, Tillmann
    Datta, Animesh
    [J]. PHYSICAL REVIEW LETTERS, 2016, 116 (03)
  • [6] Computable and Operationally Meaningful Multipartite Entanglement Measures
    Beckey, Jacob L.
    Gigena, N.
    Coles, Patrick J.
    Cerezo, M.
    [J]. PHYSICAL REVIEW LETTERS, 2021, 127 (14)
  • [7] Quantum-enhanced measurements without entanglement
    Braun, Daniel
    Adesso, Gerardo
    Benatti, Fabio
    Floreanini, Roberto
    Marzolino, Ugo
    Mitchell, Morgan W.
    Pirandola, Stefano
    [J]. REVIEWS OF MODERN PHYSICS, 2018, 90 (03)
  • [8] STATISTICAL DISTANCE AND THE GEOMETRY OF QUANTUM STATES
    BRAUNSTEIN, SL
    CAVES, CM
    [J]. PHYSICAL REVIEW LETTERS, 1994, 72 (22) : 3439 - 3443
  • [9] Squeezing as a resource to counteract phase diffusion in optical phase estimation
    Carrara, G.
    Genoni, M. G.
    Cialdi, S.
    Paris, M. G. A.
    Olivares, S.
    [J]. PHYSICAL REVIEW A, 2020, 102 (06)
  • [10] Variational quantum algorithms
    Cerezo, M.
    Arrasmith, Andrew
    Babbush, Ryan
    Benjamin, Simon C.
    Endo, Suguru
    Fujii, Keisuke
    McClean, Jarrod R.
    Mitarai, Kosuke
    Yuan, Xiao
    Cincio, Lukasz
    Coles, Patrick J.
    [J]. NATURE REVIEWS PHYSICS, 2021, 3 (09) : 625 - 644