Green functions and smooth distances

被引:0
作者
Feneuil, Joseph [1 ]
Li, Linhan [2 ]
Mayboroda, Svitlana [3 ]
机构
[1] Australian Natl Univ, Math Sci Inst, Acton, ACT, Australia
[2] Univ Edinburgh, Sch Math, Edinburgh, Scotland
[3] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
关键词
UNIFORM RECTIFIABILITY; HARMONIC MEASURE; DIRICHLET PROBLEM; POISSON KERNELS; APPROXIMATION; OPERATORS;
D O I
10.1007/s00208-023-02715-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we show that for an optimal class of elliptic operators with non-smooth coefficients on a 1-sided Chord-Arc domain, the boundary of the domain is uniformly rectifiable if and only if the Green function G behaves like a distance function to the boundary, in the sense that vertical bar del G(X)/G(X) - del D(X)/D(X)vertical bar(2) D(X)dX is the density of aCarlesonmeasure, where D is a regularized distance adapted to the boundary of the domain. Themain ingredient in our proof is a corona decomposition that is compatible with Tolsa's alpha-number of uniformly rectifiable sets. We believe that the method can be applied to many other problems at the intersection of PDE and geometric measure theory, and in particular, we are able to derive a generalization of the classical F. and M. Riesz theorem to the same class of elliptic operators as above.
引用
收藏
页码:2637 / 2727
页数:91
相关论文
共 48 条
[1]   Doubling conditions for harmonic measure in John domains [J].
Aikawa, Hiroaki ;
Hirata, Kentaro .
ANNALES DE L INSTITUT FOURIER, 2008, 58 (02) :429-445
[2]  
Azzam J., PREPRINT
[3]   Uniform Rectifiability, Elliptic Measure, Square Functions, and ε-Approximability Via an ACF Monotonicity Formula [J].
Azzam, Jonas ;
Garnett, John ;
Mourgoglou, Mihalis ;
Tolsa, Xavier .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (13) :10837-10941
[4]   Semi-Uniform Domains and the A∞ Property for Harmonic Measure [J].
Azzam, Jonas .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (09) :6717-6771
[5]  
Azzam J, 2020, INVENT MATH, V222, P881, DOI 10.1007/s00222-020-00984-5
[6]   A new characterization of chord-arc domains [J].
Azzam, Jonas ;
Hofmann, Steve ;
Maria Martell, Jose ;
Nystrom, Kaj ;
Toro, Tatiana .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2017, 19 (04) :967-981
[7]   Rectifiability of harmonic measure [J].
Azzam, Jonas ;
Hofmann, Steve ;
Martell, Jose Maria ;
Mayboroda, Svitlana ;
Mourgoglou, Mihalis ;
Tolsa, Xavier ;
Volberg, Alexander .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2016, 26 (03) :703-728
[8]   CORONIZATIONS AND BIG PIECES IN METRIC SPACES [J].
Bortz, Simon ;
Hoffman, John ;
Hofmann, Steve ;
Luna-Garcia, Jose Luis ;
Nystrom, Kaj .
ANNALES DE L INSTITUT FOURIER, 2022, 72 (05) :2037-2078
[9]   Harmonic measure and approximation of uniformly rectifiable sets [J].
Bortz, Simon ;
Hofmann, Steve .
REVISTA MATEMATICA IBEROAMERICANA, 2017, 33 (01) :351-373
[10]   BOUNDARY-BEHAVIOR OF NONNEGATIVE SOLUTIONS OF ELLIPTIC-OPERATORS IN DIVERGENCE FORM [J].
CAFFARELLI, L ;
FABES, E ;
MORTOLA, S ;
SALSA, S .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (04) :621-640