Engineered nitrogen doping on VO2(B) enables fast and reversible zinc-ion storage capability for aqueous zinc-ion batteries

被引:82
作者
Gu, Xin [1 ]
Wang, Juntao [1 ]
Zhao, Xiaobin [1 ]
Jin, Xin [1 ]
Jiang, Yuzhe [1 ]
Dai, Pengcheng [1 ]
Wang, Nana [2 ]
Bai, Zhongchao [3 ]
Zhang, Mengdi [1 ]
Wu, Mingbo [1 ]
机构
[1] China Univ Petr East China, Coll New Energy, State Key Lab Heavy Oil Proc, Qingdao 266580, Shandong, Peoples R China
[2] Univ Wollongong Innovat Campus, Inst Superconducting & Elect Mat, Australian Inst Innovat Mat, North Wollongong, NSW 2500, Australia
[3] Univ Shanghai Sci & Technol, Inst Energy Mat Sci IEMS, Shanghai 200093, Peoples R China
来源
JOURNAL OF ENERGY CHEMISTRY | 2023年 / 85卷
基金
中国国家自然科学基金;
关键词
Vanadium dioxide; Nitrogen doping; Cathode materials; Aqueous zinc-ion batteries; CATHODE MATERIALS; STABILITY; KINETICS;
D O I
10.1016/j.jechem.2023.05.043
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Vanadium-based compounds with high theoretical capacities and relatively stable crystal structures are potential cathodes for aqueous zinc-ion batteries (AZIBs). Nevertheless, their low electronic conductivity and sluggish zinc-ion diffusion kinetics in the crystal lattice are greatly obstructing their practical application. Herein, a general and simple nitrogen doping strategy is proposed to construct nitrogen-doped VO2(B) nanobelts (denoted as VO2-N) by the ammonia heat treatment. Compared with pure VO2(B), VO2-N shows an expanded lattice, reduced grain size, and disordered structure, which facilitates ion transport, provides additional ion storage sites, and improves structural durability, thus presenting much-enhanced zinc-ion storage performance. Density functional theory calculations demonstrate that nitrogen doping in VO2(B) improves its electronic properties and reduces the zinc-ion diffusion barrier. The optimal VO2-N400 electrode exhibits a high specific capacity of 373.7 mA h g-1 after 100 cycles at 0.1 A g-1 and stable cycling performance after 2000 cycles at 5 A g-1. The zinc-ion storage mechanism of VO2-N is identified as a typical intercalation/de-intercalation process.& COPY; 2023 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.
引用
收藏
页码:30 / 38
页数:9
相关论文
共 49 条
[31]   A critical review of cathodes for rechargeable Mg batteries [J].
Mao, Minglei ;
Gao, Tao ;
Hou, Singyuk ;
Wang, Chunsheng .
CHEMICAL SOCIETY REVIEWS, 2018, 47 (23) :8804-8841
[32]   Rational design of MWCNTs@amorphous carbon@MoS2: Towards high performance cathode for aqueous zinc-ion batteries [J].
Niu, Feier ;
Bai, Zhongchao ;
Mao, Yueyuan ;
Zhang, Shaoqing ;
Yan, Haoran ;
Xu, Xun ;
Chen, Junming ;
Wang, Nana .
CHEMICAL ENGINEERING JOURNAL, 2023, 453
[33]   Superior electrochemical performance of dual-monoclinic δ-NaxV2O5/VO2(B) composite material with enhanced synergistic effects [J].
Pan, Dong ;
Liu, Tao ;
Fu, JiangTao ;
Liu, Hong .
JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 926
[34]   Flexible Free-Standing VO2/MXene Conductive Films as Cathodes for Quasi-Solid-State Zinc-Ion Batteries [J].
Shi, Zhenglu ;
Ru, Qiang ;
Pan, Zikang ;
Zheng, Minhui ;
Chi-Chun Ling, Francis ;
Wei, Li .
CHEMELECTROCHEM, 2021, 8 (06) :1091-1097
[35]   Structural engineering of NiFe-Layered double hydroxides and halloysite composites for efficient CO2 capture [J].
Wang, Jian ;
Zhang, Yan ;
Si, Jiwen ;
Zhang, Wei ;
Liang, Qing ;
Li, Wenqing ;
Jin, Bo ;
Miao, Shiding .
CHEMICAL ENGINEERING JOURNAL, 2023, 463
[36]   Boosting Fast and Stable Alkali Metal Ion Storage by Synergistic Engineering of Oxygen Vacancy and Amorphous Structure [J].
Wen, Sheng ;
Gu, Xin ;
Ding, Xiangwei ;
Dai, Pengcheng ;
Zhang, Dongju ;
Li, Liangjun ;
Liu, Dandan ;
Zhao, Xuebo ;
Yang, Jian .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (06)
[37]   Constructing ultrastable electrode/electrolyte interface for rapid potassium ion storage capability via salt chemistry and interfacial engineering [J].
Wen, Sheng ;
Gu, Xin ;
Ding, Xiangwei ;
Zhang, Li ;
Dai, Pengcheng ;
Li, Liangjun ;
Liu, Dandan ;
Zhang, Wenchao ;
Zhao, Xuebo ;
Guo, Zaiping .
NANO RESEARCH, 2022, 15 (03) :2083-2091
[38]   Aqueous Zn-based rechargeable batteries: Recent progress and future perspectives [J].
Wu, Mingjie ;
Zhang, Gaixia ;
Yang, Huaming ;
Liu, Xianhu ;
Dubois, Marc ;
Gauthier, Marc A. ;
Sun, Shuhui .
INFOMAT, 2022, 4 (05)
[39]   Defect Engineering in Manganese-Based Oxides for Aqueous Rechargeable Zinc-Ion Batteries: A Review [J].
Xiong, Ting ;
Zhang, Yaoxin ;
Lee, Wee Siang Vincent ;
Xue, Junmin .
ADVANCED ENERGY MATERIALS, 2020, 10 (34)
[40]   Monodispersed flower-like MXene@VO2 clusters for aqueous zinc ion batteries with superior rate performance [J].
Xu, Zhibin ;
Li, Xilong ;
Jin, Yueang ;
Dong, Qi ;
Ye, Jiajia ;
Zhang, Xueqian ;
Qian, Yitai .
NANOSCALE, 2022, 14 (32) :11655-11663