Natural Convection in a Newtonian Nanoliquid-Saturated Porous Enclosure with Local Thermal Non-Equilibrium Effect

被引:0
作者
Siddabasappa, C. [1 ]
Aishwarya, K. [1 ]
Babitha [2 ]
机构
[1] MS Ramaiah Univ Appl Sci, Fac Math & Phys Sci, Dept Math & Stat, Bangalore 560058, India
[2] Presidency Univ, Dept Math, Bangalore 560089, India
关键词
Porous Enclosure; Adiabatic; Isothermal; Buoyancy-Driven Convection; Local Thermal Non-Equilibrium; SINUSOIDAL TEMPERATURE DISTRIBUTIONS; HEAT-TRANSFER; INCLINED CAVITY; SQUARE CAVITY; NANOFLUID; NANOPARTICLES; ENHANCEMENT;
D O I
10.1166/jon.2023.2048
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Buoyancy-driven convective flow and heat transfer characteristics in a Newtonian nanoliquid-saturated porous square enclosure are analyzed numerically using a local thermal non-equilibrium model. An enclosure's horizontal walls are considered free-free and adiabatic, and the vertical walls are free-free isothermal boundaries. The dimensionless governing equations are solved using a central finite difference scheme with second-degree accuracy, and the results are in satisfactory agreement with the earlier works. The impact of various parameters on streamlines and isotherms is analyzed and depicted graphically. The effect of Darcy number, thermal Rayleigh number, and the ratio of thermal conductivities slow down the liquid flow. The temperature distribution is maximum at sidewalls and diminishes the amount of heat transport. The opposite phenomenon is observed for the solute Rayleigh number and interphase transfer coefficient of liquid-particle phases. For large values of interphase heat transfer coefficients, liquid-solid and liquid-particle are said to be in the local thermal equilibrium phase. The amount of heat transfer increases with an increasing interphase heat transfer coefficient and the IP: 203.8.109.20 On: Wed, 02 Aug 2023 10:03:25 ratio of the phases' thermal conductivities. Results of local thermal equilibrium situation can be obtained as the particular case of the study. The amount of heat transfer is maximum in the local thermal non-equilibrium situDelivered by Ingenta ation, and enhanced by 0.09% compared with the local thermal equilibrium situation. Heat transport is 0.74% less in the sparsely packed porous medium compared with the low-porosity medium.
引用
收藏
页码:1652 / 1665
页数:14
相关论文
共 46 条
[1]   Dissection of entropy production for the free convection of NEPCMs-filled porous wavy enclosure subject to volumetric heat source/sink [J].
Afshar, S. R. ;
Mishra, S. R. ;
Dogonchi, A. Sattar ;
Karimi, Nader ;
Chamkha, Ali J. ;
Abulkhair, Hani .
JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2021, 128 :98-113
[2]   HEAT TRANSFER PERFORMANCE IN A COMPLEX WAVY CAVITY WITH SINUSOIDAL TEMPERATURE DISTRIBUTIONS FILLED WITH A HEAT-GENERATING POROUS MEDIUM AND NANOFLUID [J].
Ahmed, Sameh E. ;
Raizah, Z. A. S. ;
Aly, Abdelraheem M. .
JOURNAL OF POROUS MEDIA, 2021, 24 (09) :49-68
[3]   Mixed convection of Al2O3-water nanofluid in a double lid-driven square cavity with a solid inner insert using Buongiorno's two-phase model [J].
Alsabery, Ammar I. ;
Ismael, Muneer A. ;
Chamkha, Ali J. ;
Hashim, Ishak .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 119 :939-961
[4]   Free convection in a square porous cavity using a thermal nonequilibrium model [J].
Baytas, AC ;
Pop, L .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2002, 41 (09) :861-870
[5]   Convective Transport in a Nanofluid Saturated Porous Layer With Thermal Non Equilibrium Model [J].
Bhadauria, B. S. ;
Agarwal, Shilpi .
TRANSPORT IN POROUS MEDIA, 2011, 88 (01) :107-131
[6]   A benchmark study on the thermal conductivity of nanofluids [J].
Buongiorno, Jacopo ;
Venerus, David C. ;
Prabhat, Naveen ;
McKrell, Thomas ;
Townsend, Jessica ;
Christianson, Rebecca ;
Tolmachev, Yuriy V. ;
Keblinski, Pawel ;
Hu, Lin-wen ;
Alvarado, Jorge L. ;
Bang, In Cheol ;
Bishnoi, Sandra W. ;
Bonetti, Marco ;
Botz, Frank ;
Cecere, Anselmo ;
Chang, Yun ;
Chen, Gany ;
Chen, Haisheng ;
Chung, Sung Jae ;
Chyu, Minking K. ;
Das, Sarit K. ;
Di Paola, Roberto ;
Ding, Yulong ;
Dubois, Frank ;
Dzido, Grzegorz ;
Eapen, Jacob ;
Escher, Werner ;
Funfschilling, Denis ;
Galand, Quentin ;
Gao, Jinwei ;
Gharagozloo, Patricia E. ;
Goodson, Kenneth E. ;
Gutierrez, Jorge Gustavo ;
Hong, Haiping ;
Horton, Mark ;
Hwang, Kyo Sik ;
Iorio, Carlo S. ;
Jang, Seok Pil ;
Jarzebski, Andrzej B. ;
Jiang, Yiran ;
Jin, Liwen ;
Kabelac, Stephan ;
Kamath, Aravind ;
Kedzierski, Mark A. ;
Kieng, Lim Geok ;
Kim, Chongyoup ;
Kim, Ji-Hyun ;
Kim, Seokwon ;
Lee, Seung Hyun ;
Leong, Kai Choong .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (09)
[7]  
Chamkha A. J., 2002, NUMERICAL HEAT TRANS, Patent No. IP:203.8.109.20On:W65
[8]   Hydromagnetic combined heat and mass transfer by natural convection from a permeable surface embedded in a fluid-saturated porous medium [J].
Chamkha, AJ ;
Khaled, ARA .
INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2000, 10 (5-6) :455-476
[9]   Magnetohydrodynamic Nanofluid Natural Convection in a Cavity under Thermal Radiation and Shape Factor of Nanoparticles Impacts: A Numerical Study Using CVFEM [J].
Chamkha, Ali J. ;
Dogonchi, A. S. ;
Ganji, D. D. .
APPLIED SCIENCES-BASEL, 2018, 8 (12)
[10]  
Chandrasekhar S., 1961, HYDRODYNAMIC HYDROMA