MULTIPLE SOLUTIONS FOR PERTURBED QUASILINEAR ELLIPTIC PROBLEMS

被引:1
作者
Bartolo, Rossella [1 ]
Candela, Anna Maria [2 ]
Salvatore, Addolorata [2 ]
机构
[1] Politecnico Bari, Dipartimento Meccan Matemat & Management, Via E Orabona 4, I-70125 Bari, Italy
[2] Univ Bari Aldo Moro, Dipartimento Matemat, Via E Orabona 4, I-70125 Bari, Italy
关键词
(p; q)-quasilinear elliptic equation; asymptotically (q-1)-linear problem; q)-Laplacian operator; variational methods; essential value; perturbed problem; pseudo-genus; quasi-eigenvalue; regularity of solutions; P-LAPLACIAN PROBLEMS; WEAK SOLUTIONS; EQUATIONS; REGULARITY; NONLINEARITY; EXISTENCE;
D O I
10.12775/TMNA.2022.069
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the existence of multiple solutions for the (p q)-quasilinear elliptic problem {-Delta(p)u - Delta(q)u = g(x; u) + epsilon h(x, u) in Omega u = 0 on partial derivative Omega where 1 < p < q < +infinity, Omega is an open bounded domain of R-N, the non-linearity g(x, u) behaves at infinity as vertical bar u vertical bar(q-1), epsilon is an element of R and h is an element of C(<(Omega)over bar> x R, R). In spite of the possible lack of a variational structure of this problem, from suitable assumptions on g(x, u) and appropriate procedures and estimates, the existence of multiple solutions can be proved for small perturbations.
引用
收藏
页码:549 / 574
页数:26
相关论文
共 50 条
[1]   Multiple solutions for perturbed quasilinear elliptic problems with oscillatory terms [J].
Guo, Zuji .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 77 :149-157
[2]   MULTIPLE NONSEMITRIVIAL SOLUTIONS FOR QUASILINEAR ELLIPTIC SYSTEMS VIA ASSOCIATED EIGENVALUE PROBLEMS [J].
Lin, Ying-Chieh ;
Wang, Kuan-Hsiang ;
Wu, Tsung-Fang .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2023, 22 (05) :1659-1686
[3]   A weak solution to quasilinear elliptic problems with perturbed gradient [J].
Azroul, Elhoussine ;
Balaadich, Farah .
RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (01) :151-166
[4]   Multiple Positive Solutions for Quasilinear Elliptic Problems in Expanding Domains [J].
Liu, Wulong ;
Dai, Guowei ;
Winkert, Patrick ;
Zeng, Shengda .
APPLIED MATHEMATICS AND OPTIMIZATION, 2024, 90 (01)
[5]   Multiplicity Results for a Class of Quasilinear Elliptic Problems [J].
Bartolo, R. .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2014, 11 (04) :1099-1113
[6]   Multiple positive solutions for singularly perturbed elliptic problems in exterior domains [J].
Cerami, G ;
Molle, R .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2003, 20 (05) :759-777
[7]   The existence of solutions for quasilinear elliptic problems with multiple Hardy terms [J].
Li, Yuanyuan .
APPLIED MATHEMATICS LETTERS, 2018, 81 :7-13
[8]   Multiple Solutions for a Singular Quasilinear Elliptic System [J].
Chen, Lin ;
Chen, Caisheng ;
Xiu, Zonghu .
SCIENTIFIC WORLD JOURNAL, 2013,
[9]   Multiple solutions for quasilinear elliptic problems with concave-convex nonlinearities in Orlicz-Sobolev spaces [J].
Wu, Shujun .
BOUNDARY VALUE PROBLEMS, 2019, 2019 (01)
[10]   A weak solution to quasilinear elliptic problems with perturbed gradient [J].
Elhoussine Azroul ;
Farah Balaadich .
Rendiconti del Circolo Matematico di Palermo Series 2, 2021, 70 :151-166