Radiomics Analysis for Multiple Myeloma: A Systematic Review with Radiomics Quality Scoring

被引:5
作者
Klontzas, Michail E. [1 ,2 ]
Triantafyllou, Matthaios [1 ]
Leventis, Dimitrios [1 ]
Koltsakis, Emmanouil [3 ]
Kalarakis, Georgios [3 ,4 ]
Tzortzakakis, Antonios [4 ,5 ]
Karantanas, Apostolos H. [1 ,2 ]
机构
[1] Univ Hosp Heraklion, Dept Med Imaging, Iraklion 71110, Greece
[2] Univ Crete, Sch Med, Dept Radiol, Voutes Campus, Iraklion 71003, Greece
[3] Karolinska Univ Hosp, Dept Radiol, S-14152 Stockholm, Sweden
[4] Karolinska Inst, Dept Clin Sci Intervent & Technol CLINTEC, Div Radiol, S-14152 Stockholm, Sweden
[5] Karolinska Univ Hosp, Sect Nucl Med, Med Radiat Phys & Nucl Med, S-14186 Stockholm, Sweden
关键词
multiple myeloma; radiomics; machine learning; metastases; radiomics quality score; IMAGES; DISEASE; HETEROGENEITY; SEGMENTATION; DIAGNOSIS;
D O I
10.3390/diagnostics13122021
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Multiple myeloma (MM) is one of the most common hematological malignancies affecting the bone marrow. Radiomics analysis has been employed in the literature in an attempt to evaluate the bone marrow of MM patients. This manuscript aimed to systematically review radiomics research on MM while employing a radiomics quality score (RQS) to accurately assess research quality in the field. A systematic search was performed on Web of Science, PubMed, and Scopus. The selected manuscripts were evaluated (data extraction and RQS scoring) by three independent readers (R1, R2, and R3) with experience in radiomics analysis. A total of 23 studies with 2682 patients were included, and the median RQS was 10 for R1 (IQR 5.5-12) and R3 (IQR 8.3-12) and 11 (IQR 7.5-12.5) for R2. RQS was not significantly correlated with any of the assessed bibliometric data (impact factor, quartile, year of publication, and imaging modality) (p > 0.05). Our results demonstrated the low quality of published radiomics research in MM, similarly to other fields of radiomics research, highlighting the need to tighten publication standards.
引用
收藏
页数:13
相关论文
共 50 条
[21]   Radiomic Analysis of Positron-Emission Tomography and Computed Tomography Images to Differentiate between Multiple Myeloma and Skeletal Metastases [J].
Mannam, Pallavi ;
Murali, Arunan ;
Gokulakrishnan, Periakaruppan ;
Venkatachalapathy, Easwaramoorthy ;
Sai, Pulivadula Mohanarangam Venkata .
INDIAN JOURNAL OF NUCLEAR MEDICINE, 2022, 37 (03) :217-+
[22]   Improved 18-FDG PET/CT diagnosis of multiple myeloma diffuse disease by radiomics analysis [J].
Mesguich, Charles ;
Hindie, Elif ;
de Senneville, Baudouin Denis ;
Tlili, Ghoufrane ;
Pinaquy, Jean-Baptiste ;
Marit, Gerald ;
Saut, Olivier .
NUCLEAR MEDICINE COMMUNICATIONS, 2021, 42 (10) :1135-1143
[23]   Bone marrow segmentation and radiomics analysis of [18F]FDG PET/CT images for measurable residual disease assessment in multiple myeloma [J].
Milara, Eva ;
Gomez-Grande, Adolfo ;
Tomas-Soler, Sebastian ;
Seiffert, Alexander P. ;
Alonso, Rafael ;
Gomez, Enrique J. ;
Martinez-Lopez, Joaquin ;
Sanchez-Gonzalez, Patricia .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 225
[24]   Radiomics in Renal Cell Carcinoma-A Systematic Review and Meta-Analysis [J].
Muhlbauer, Julia ;
Egen, Luisa ;
Kowalewski, Karl-Friedrich ;
Grilli, Maurizio ;
Walach, Margarete T. ;
Westhoff, Niklas ;
Nuhn, Philipp ;
Laqua, Fabian C. ;
Baessler, Bettina ;
Kriegmair, Maximilian C. .
CANCERS, 2021, 13 (06) :1-15
[25]   Validation and algorithmic audit of a deep learning system for the detection of proximal femoral fractures in patients in the emergency department: a diagnostic accuracy study [J].
Oakden-Rayner, Lauren ;
Gale, William ;
Bonham, Thomas A. ;
Lungren, Matthew P. ;
Carneiro, Gustavo ;
Bradley, Andrew P. ;
Palmer, Lyle J. .
LANCET DIGITAL HEALTH, 2022, 4 (05) :E351-E358
[26]   A novel machine learning-derived radiotranscriptomic signature of perivascular fat improves cardiac risk prediction using coronary CT angiography [J].
Oikonomou, Evangelos K. ;
Williams, Michelle C. ;
Kotanidis, Christos P. ;
Desai, Milind Y. ;
Marwan, Mohamed ;
Antonopoulos, Alexios S. ;
Thomas, Katharine E. ;
Thomas, Sheena ;
Akoumianakis, Ioannis ;
Fan, Lampson M. ;
Kesavan, Sujatha ;
Herdman, Laura ;
Alashi, Alaa ;
Centeno, Erika Hutt ;
Lyasheva, Maria ;
Griffin, Brian P. ;
Flamm, Scott D. ;
Shirodaria, Cheerag ;
Sabharwal, Nikant ;
Kelion, Andrew ;
Dweck, Marc R. ;
Van Beek, Edwin J. R. ;
Deanfield, John ;
Hopewell, Jemma C. ;
Neubauer, Stefan ;
Channon, Keith M. ;
Achenbach, Stephan ;
Newby, David E. ;
Antoniades, Charalambos .
EUROPEAN HEART JOURNAL, 2019, 40 (43) :3529-3543
[27]   Whole-Body Imaging of Multible Myeloma: Diagnostic Criteria [J].
Ormond Filho, Alipio G. ;
Carneiro, Bruno C. ;
Pastore, Daniel ;
Silva, Igor P. ;
Yamashita, Sarnia R. ;
Consolo, Flavio D. ;
Hungria, Vania T. M. ;
Sandes, Alex F. ;
Rizzatti, Edgar G. ;
Nico, Marcelo A. C. .
RADIOGRAPHICS, 2019, 39 (04) :1077-1097
[28]   The PRISMA 2020 statement: An updated guideline for reporting systematic reviews [J].
Page, Matthew J. ;
McKenzie, Joanne E. ;
Bossuyt, Patrick M. ;
Boutron, Isabelle ;
Hoffmann, Tammy C. ;
Mulrow, Cynthia D. ;
Shamseer, Larissa ;
Tetzlaff, Jennifer M. ;
Akl, Elie A. ;
Brennan, Sue E. ;
Chou, Roger ;
Glanville, Julie ;
Grimshaw, Jeremy M. ;
Hrobjartsson, Asbjorn ;
Lalu, Manoj M. ;
Li, Tianjing ;
Loder, Elizabeth W. ;
Mayo-Wilson, Evan ;
McDonald, Steve ;
McGuinness, Luke A. ;
Stewart, Lesley A. ;
Thomas, James ;
Tricco, Andrea C. ;
Welch, Vivian A. ;
Whiting, Penny ;
Moher, David .
PLOS MEDICINE, 2021, 18 (03)
[29]  
Papanikolaou N, 2020, CANCER IMAGING, V20, DOI [10.1186/s40644-020-00311-4, 10.1177/1077559520932665]
[30]   Detecting Multiple Myeloma Infiltration of the Bone Marrow on CT Scans in Patients with Osteopenia: Feasibility of Radiomics Analysis [J].
Park, Hyerim ;
Lee, So-Yeon ;
Lee, Jooyeon ;
Pak, Juyoung ;
Lee, Koeun ;
Lee, Seung-Eun ;
Jung, Joon-Yong .
DIAGNOSTICS, 2022, 12 (04)