Radiomics Analysis for Multiple Myeloma: A Systematic Review with Radiomics Quality Scoring

被引:5
作者
Klontzas, Michail E. [1 ,2 ]
Triantafyllou, Matthaios [1 ]
Leventis, Dimitrios [1 ]
Koltsakis, Emmanouil [3 ]
Kalarakis, Georgios [3 ,4 ]
Tzortzakakis, Antonios [4 ,5 ]
Karantanas, Apostolos H. [1 ,2 ]
机构
[1] Univ Hosp Heraklion, Dept Med Imaging, Iraklion 71110, Greece
[2] Univ Crete, Sch Med, Dept Radiol, Voutes Campus, Iraklion 71003, Greece
[3] Karolinska Univ Hosp, Dept Radiol, S-14152 Stockholm, Sweden
[4] Karolinska Inst, Dept Clin Sci Intervent & Technol CLINTEC, Div Radiol, S-14152 Stockholm, Sweden
[5] Karolinska Univ Hosp, Sect Nucl Med, Med Radiat Phys & Nucl Med, S-14186 Stockholm, Sweden
关键词
multiple myeloma; radiomics; machine learning; metastases; radiomics quality score; IMAGES; DISEASE; HETEROGENEITY; SEGMENTATION; DIAGNOSIS;
D O I
10.3390/diagnostics13122021
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Multiple myeloma (MM) is one of the most common hematological malignancies affecting the bone marrow. Radiomics analysis has been employed in the literature in an attempt to evaluate the bone marrow of MM patients. This manuscript aimed to systematically review radiomics research on MM while employing a radiomics quality score (RQS) to accurately assess research quality in the field. A systematic search was performed on Web of Science, PubMed, and Scopus. The selected manuscripts were evaluated (data extraction and RQS scoring) by three independent readers (R1, R2, and R3) with experience in radiomics analysis. A total of 23 studies with 2682 patients were included, and the median RQS was 10 for R1 (IQR 5.5-12) and R3 (IQR 8.3-12) and 11 (IQR 7.5-12.5) for R2. RQS was not significantly correlated with any of the assessed bibliometric data (impact factor, quartile, year of publication, and imaging modality) (p > 0.05). Our results demonstrated the low quality of published radiomics research in MM, similarly to other fields of radiomics research, highlighting the need to tighten publication standards.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] Automatic bone segmentation in whole-body CT images
    Klein, Andre
    Warszawski, Jan
    Hillengass, Jens
    Maier-Hein, Klaus H.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2019, 14 (01) : 21 - 29
  • [12] AI Reporting Guidelines: How to Select the Best One for Your Research
    Klontzas, Michail E.
    Gatti, Anthony A.
    Tejani, Ali S.
    Kahn, Charles E.
    [J]. RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2023, 5 (03)
  • [13] Musculoskeletal trauma imaging in the era of novel molecular methods and artificial intelligence
    Klontzas, Michail E.
    Papadakis, Georgios Z.
    Marias, Kostas
    Karantanas, Apostolos H.
    [J]. INJURY-INTERNATIONAL JOURNAL OF THE CARE OF THE INJURED, 2020, 51 (12): : 2748 - 2756
  • [14] Radiomics: the bridge between medical imaging and personalized medicine
    Lambin, Philippe
    Leijenaar, Ralph T. H.
    Deist, Timo M.
    Peerlings, Jurgen
    de Jong, Evelyn E. C.
    van Timmeren, Janita
    Sanduleanu, Sebastian
    Larue, Ruben T. H. M.
    Even, Aniek J. G.
    Jochems, Arthur
    van Wijk, Yvonka
    Woodruff, Henry
    van Soest, Johan
    Lustberg, Tim
    Roelofs, Erik
    van Elmpt, Wouter
    Dekker, Andre
    Mottaghy, Felix M.
    Wildberger, Joachim E.
    Walsh, Sean
    [J]. NATURE REVIEWS CLINICAL ONCOLOGY, 2017, 14 (12) : 749 - 762
  • [15] Characterising spatial heterogeneity of multiple myeloma in high resolution by whole body magnetic resonance imaging: Towards macro-phenotype driven patient management
    Latifoltojar, Arash
    Boyd, Kevin
    Riddell, Angela
    Kaiser, Martin
    Messiou, Christina
    [J]. MAGNETIC RESONANCE IMAGING, 2021, 75 : 60 - 64
  • [16] Differentiating Multiple Myeloma and Osteolytic Bone Metastases on Contrast-Enhanced Computed Tomography Scans: The Feasibility of Radiomics Analysis
    Lee, Seungeun
    Lee, So-Yeon
    Kim, Sanghee
    Huh, Yeon-Jung
    Lee, Jooyeon
    Lee, Ko-Eun
    Jung, Joon-Yong
    [J]. DIAGNOSTICS, 2023, 13 (04)
  • [17] Radiomics Models Based on Magnetic Resonance Imaging for Prediction of the Response to Bortezomib-Based Therapy in Patients with Multiple Myeloma
    Li, Yang
    Yin, Ping
    Liu, Yang
    Hao, Chuanxi
    Chen, Lei
    Sun, Chao
    Wang, Sicong
    Hong, Nan
    [J]. BIOMED RESEARCH INTERNATIONAL, 2022, 2022
  • [18] MRI-Based Bone Marrow Radiomics Nomogram for Prediction of Overall Survival in Patients With Multiple Myeloma
    Li, Yang
    Liu, Yang
    Yin, Ping
    Hao, Chuanxi
    Sun, Chao
    Chen, Lei
    Wang, Sicong
    Hong, Nan
    [J]. FRONTIERS IN ONCOLOGY, 2021, 11
  • [19] Vertebral MRI-based radiomics model to differentiate multiple myeloma from metastases: influence of features number on logistic regression model performance
    Liu, Jianfang
    Guo, Wei
    Zeng, Piaoe
    Geng, Yayuan
    Liu, Yan
    Ouyang, Hanqiang
    Lang, Ning
    Yuan, Huishu
    [J]. EUROPEAN RADIOLOGY, 2022, 32 (01) : 572 - 581
  • [20] A preliminary study using spinal MRI-based radiomics to predict high-risk cytogenetic abnormalities in multiple myeloma
    Liu, Jianfang
    Wang, Chunjie
    Guo, Wei
    Zeng, Piaoe
    Liu, Yan
    Lang, Ning
    Yuan, Huishu
    [J]. RADIOLOGIA MEDICA, 2021, 126 (09): : 1226 - 1235