Two Special Types of Curves in Lorentzian α-Sasakian 3-Manifolds

被引:0
作者
Chen, Xiawei [1 ]
Liu, Haiming [1 ]
机构
[1] Mudanjiang Normal Univ, Sch Math, Mudanjiang 157011, Peoples R China
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 05期
基金
黑龙江省自然科学基金;
关键词
Lorentzian cross product; slant curves; Lorentzian alpha-Sasakian manifold; magnetic curves; SLANT CURVES; CONTACT; SURFACES; PRODUCT;
D O I
10.3390/sym15051077
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we focus on the research and analysis of the geometric properties and symmetry of slant curves and contact magnetic curves in Lorentzian a-Sasakian 3-manifolds. To do this, we define the notion of Lorentzian cross product. From the perspectives of the Legendre and non-geodesic curves, we found the ratio relationship between the curvature and torsion of the slant curve and contact magnetic curve in the Lorentzian a-Sasakian 3-manifolds. Moreover, we utilized the property of the contact magnetic curve to characterize the manifold as Lorentzian a-Sasakian and to find the slant curve type of the Frenet contact magnetic curve. Furthermore, we found an example to verify the geometric properties of the slant curve and contact magnetic curve in the Lorentzian a-Sasakian 3-manifolds.
引用
收藏
页数:13
相关论文
共 37 条
  • [1] Frenet curves in 3-dimensional δ-Lorentzian trans Sasakian manifolds
    Akgun, Muslum Aykut
    [J]. AIMS MATHEMATICS, 2022, 7 (01): : 199 - 211
  • [2] Bagewadi C.S., 2012, Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis, V28, P59
  • [3] The Gauss-Landau-Hall problem on Riemannian surfaces -: art. no. 112905
    Barros, M
    Romero, A
    Cabrerizo, JL
    Fernández, M
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (11)
  • [4] Blair D.E., 2006, CONTACT MANIFOLDS RI, V509, P1
  • [5] Blair D.E., 1990, Publications Matematiques, V34, P199
  • [6] Blair D.E., 2002, PROG MATH, V203
  • [7] Contact Lorentzian manifolds
    Calvaruso, Giovanni
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2011, 29 : S41 - S51
  • [8] Extended cross product in a 3-dimensional almost contact metric manifold with applications to curve theory
    Camci, Cetin
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2012, 36 (02) : 305 - 318
  • [9] Ricci Soliton and Certain Related Metrics on a Three-Dimensional Trans-Sasakian Manifold
    Chen, Zhizhi
    Li, Yanlin
    Sarkar, Sumanjit
    Dey, Santu
    Bhattacharyya, Arindam
    [J]. UNIVERSE, 2022, 8 (11)
  • [10] On slant curves in Sasakian 3-manifolds
    Cho, Jong Taek
    Inoguchi, Jun-ichi
    Lee, Ji-Eun
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2006, 74 (03) : 359 - 367