Reactive CO2 capture: A path forward for process integration in carbon management

被引:53
作者
Freyman, Megan C. [1 ,2 ]
Huang, Zhe [3 ]
Ravikumar, Dwarakanath [3 ,4 ]
Duoss, Eric B. [2 ]
Li, Yat [1 ]
Baker, Sarah E. [2 ]
Pang, Simon H. [2 ]
Schaidle, Joshua A. [3 ]
机构
[1] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA
[3] Natl Renewable Energy Lab, Golden, CO 80401 USA
[4] Univ Waterloo, Dept Civil & Environm Engn, Waterloo, ON, Canada
关键词
METAL-ORGANIC FRAMEWORK; DUAL FUNCTION MATERIALS; SP-NOV; GEN-NOV; ACETOGENIC BACTERIUM; ETHANOL-PRODUCTION; RENEWABLE ENERGY; CONVERSION; EFFICIENT; METHANOL;
D O I
10.1016/j.joule.2023.03.013
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The integration of carbon dioxide (CO2) capture and conversion processes presents an opportunity to reduce energy and capital costs required to create useful products from dilute CO2 streams, such as air or flue gas. In an integrated system, regeneration of the CO2 capture media is achieved directly through the conversion of CO2 to value-added products, eliminating dedicated CO2 desorption and compression steps. We define processes that integrate CO2 capture and CO2 conversion without going through a purified CO2 intermediate stream as "reactive capture."In this perspective, we propose that the value proposition for reactive capture is the reduction of energy intensity and capital expense in the production of CO2-derived chemicals and materials. We describe the current strategies and the state of technology for reactive capture and provide a roadmap to guide research toward realizing these potential benefits.
引用
收藏
页码:631 / 651
页数:21
相关论文
共 110 条
[1]  
Air Protein, 2023, MEAT MAD AIR
[2]   Combined Capture and Utilization of CO2 for Syngas Production over Dual-Function Materials [J].
Al-Mamoori, Ahmed ;
Rownaghi, Ali A. ;
Rezaei, Fateme .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (10) :13551-13561
[3]   Ionic liquids in the electrochemical valorisation of CO2 [J].
Alvarez-Guerra, Manuel ;
Albo, Jonathan ;
Alvarez-Guerra, Enrique ;
Irabien, Angel .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (09) :2574-2599
[4]   Catalysts and adsorbents for CO2 capture and conversion with dual function materials: Limitations of Ni-containing DFMs for flue gas applications [J].
Arellano-Trevino, Martha A. ;
He, Zhuoyan ;
Libby, Malia C. ;
Farrauto, Robert J. .
JOURNAL OF CO2 UTILIZATION, 2019, 31 :143-151
[5]   Gas conditioning -: The interface between CO2 capture and transport [J].
Aspelund, Audun ;
Jordal, Kristin .
INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2007, 1 (03) :343-354
[6]   Thermocatalytic CO2 hydrogenation for methanol and ethanol production: Process improvements [J].
Atsonios, Konstantinos ;
Panopoulos, Kyriakos D. ;
Kakaras, Emmanuel .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (02) :792-806
[7]   Power to Gas projects review: Lab, pilot and demo plants for storing renewable energy and CO2 [J].
Bailera, Manuel ;
Lisbona, Pilar ;
Romeo, Luis M. ;
Espatolero, Sergio .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 69 :292-312
[8]   ACETOBACTERIUM, A NEW GENUS OF HYDROGEN-OXIDIZING, CARBON DIOXIDE-REDUCING, ANAEROBIC BACTERIA [J].
BALCH, WE ;
SCHOBERTH, S ;
TANNER, RS ;
WOLFE, RS .
INTERNATIONAL JOURNAL OF SYSTEMATIC BACTERIOLOGY, 1977, 27 (04) :355-361
[9]   Ruminococcus hydrogenotrophicus sp nov, a new H-2/CO2-utilizing acetogenic bacterium isolated from human feces [J].
Bernalier, A ;
Willems, A ;
Leclerc, M ;
Rochet, V ;
Collins, MD .
ARCHIVES OF MICROBIOLOGY, 1996, 166 (03) :176-183
[10]  
Blanshard A., 2022, FUELING NET ZERO AVI