Quality classification model with machine learning for porosity prediction in laser welding aluminum alloys

被引:6
作者
Rivera, Joys S. S. [1 ]
Gagne, Marc-Olivier [2 ]
Tu, Siyu [2 ]
Barka, Noureddine [1 ]
Nadeau, Francois [2 ]
El Ouafi, Abderrazak [1 ]
机构
[1] Univ Quebec Rimouski, Dept Math Comp Sci & Engn, Rimouski, PQ, Canada
[2] Aluminum Technol Ctr, Natl Res Council Canada, Quebec City, PQ, Canada
关键词
artificial intelligence; machine learning; laser welding; porosity; product quality; advanced manufacturing; FLOW DYNAMICS; MELT FLOW; KEYHOLE; DEFECT; GAS;
D O I
10.2351/7.0000769
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The growing implementation of aluminum alloys in industry has focused interest on studying transformation processes such as laser welding. This process generates different kinds of signals that can be monitored and used to evaluate it and make a quality analysis of the final product. Internal defects that are difficult to detect, such as porosity, are one of the most critical irregularities in laser welding. This kind of defect may result in a critical failure of the manufactured goods, affecting the final user. In this research, a porosity prediction method using a high-speed camera monitoring system and machine learning (ML) algorithms is proposed and studied to find the most performant methodology to resolve the prediction problem. The methodology includes feature extraction by high-speed X-ray analysis, feature engineering and selection, imbalance treatment, and the evaluation of the ML algorithms by metrics such as accuracy, AUC (area under the curve), and F1. As a result, it was found that the best ML algorithm for porosity prediction in the proposed setup is Random Forest with a 0.83 AUC and 75% accuracy, 0.75 in the F1 score for no porosity, and 0.76 in the F1 score for porosity. The results of the proposed model and methodology indicate that they could be implemented in industrial applications for enhancing the final product quality for welded plates, reducing process waste and product quality analysis time, and increasing the operational performance of the process.
引用
收藏
页数:17
相关论文
共 65 条
[1]   Digital twin-driven supervised machine learning for the development of artificial intelligence applications in manufacturing [J].
Alexopoulos, Kosmas ;
Nikolakis, Nikolaos ;
Chryssolouris, George .
INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING, 2020, 33 (05) :429-439
[2]  
Aparna S., 2018, PROCEEDING 2018 INT
[3]   CatBoost model and artificial intelligence techniques for corporate failure prediction [J].
Ben Jabeur, Sami ;
Gharib, Cheima ;
Mefteh-Wali, Salma ;
Ben Arfi, Wissal .
TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE, 2021, 166
[4]  
Bergmann S., TOP MINING METAL MAT
[5]  
Bhagat C., 2015, SOUVENIR 2015 IEEE I
[6]   Feature selection and classification in multiple class datasets: An application to KDD Cup 99 dataset [J].
Bolon-Canedo, V. ;
Sanchez-Marono, N. ;
Alonso-Betanzos, A. .
EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (05) :5947-5957
[7]  
Bosch A., 2007, IEEE INT C COMPUTER
[8]   Deep ROC Analysis and AUC as Balanced Average Accuracy, for Improved Classifier Selection, Audit and Explanation [J].
Carrington, Andre M. ;
Manuel, Douglas G. ;
Fieguth, Paul W. ;
Ramsay, Tim ;
Osmani, Venet ;
Wernly, Bernhard ;
Bennett, Carol ;
Hawken, Steven ;
Magwood, Olivia ;
Sheikh, Yusuf ;
McInnes, Matthew ;
Holzinger, Andreas .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (01) :329-341
[9]   Real-time monitoring of high-power disk laser welding based on support vector machine [J].
Chen, Juequan ;
Wang, Teng ;
Gao, Xiangdong ;
Li, Wei .
COMPUTERS IN INDUSTRY, 2018, 94 :75-81
[10]   Selecting critical features for data classification based on machine learning methods [J].
Chen, Rung-Ching ;
Dewi, Christine ;
Huang, Su-Wen ;
Caraka, Rezzy Eko .
JOURNAL OF BIG DATA, 2020, 7 (01)